These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 22611101)
1. Double-sided laser heating system at HPCAT for in situ x-ray diffraction at high pressures and high temperatures. Meng Y; Shen G; Mao HK J Phys Condens Matter; 2006 Jun; 18(25):S1097-103. PubMed ID: 22611101 [TBL] [Abstract][Full Text] [Related]
2. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature. Miyagi L; Kanitpanyacharoen W; Raju SV; Kaercher P; Knight J; MacDowell A; Wenk HR; Williams Q; Alarcon EZ Rev Sci Instrum; 2013 Feb; 84(2):025118. PubMed ID: 23464262 [TBL] [Abstract][Full Text] [Related]
3. A CO Smith D; Smith JS; Childs C; Rod E; Hrubiak R; Shen G; Salamat A Rev Sci Instrum; 2018 Aug; 89(8):083901. PubMed ID: 30184683 [TBL] [Abstract][Full Text] [Related]
4. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell. Kunz M; Caldwell WA; Miyagi L; Wenk HR Rev Sci Instrum; 2007 Jun; 78(6):063907. PubMed ID: 17614626 [TBL] [Abstract][Full Text] [Related]
5. Portable double-sided laser-heating system for Mössbauer spectroscopy and X-ray diffraction experiments at synchrotron facilities with diamond anvil cells. Kupenko I; Dubrovinsky L; Dubrovinskaia N; McCammon C; Glazyrin K; Bykova E; Boffa Ballaran T; Sinmyo R; Chumakov AI; Potapkin V; Kantor A; Rüffer R; Hanfland M; Crichton W; Merlini M Rev Sci Instrum; 2012 Dec; 83(12):124501. PubMed ID: 23278006 [TBL] [Abstract][Full Text] [Related]
6. Microfabrication of controlled-geometry samples for the laser-heated diamond-anvil cell using focused ion beam technology. Pigott JS; Reaman DM; Panero WR Rev Sci Instrum; 2011 Nov; 82(11):115106. PubMed ID: 22129012 [TBL] [Abstract][Full Text] [Related]
7. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team. Meng Y; Hrubiak R; Rod E; Boehler R; Shen G Rev Sci Instrum; 2015 Jul; 86(7):072201. PubMed ID: 26233341 [TBL] [Abstract][Full Text] [Related]
8. A simple external resistance heating diamond anvil cell and its application for synchrotron radiation x-ray diffraction. Fan D; Zhou W; Wei S; Liu Y; Ma M; Xie H Rev Sci Instrum; 2010 May; 81(5):053903. PubMed ID: 20515151 [TBL] [Abstract][Full Text] [Related]
9. Portable laser-heating stand for synchrotron applications. Boehler R; Musshoff HG; Ditz R; Aquilanti G; Trapananti A Rev Sci Instrum; 2009 Apr; 80(4):045103. PubMed ID: 19405687 [TBL] [Abstract][Full Text] [Related]
10. Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline. Petitgirard S; Salamat A; Beck P; Weck G; Bouvier P J Synchrotron Radiat; 2014 Jan; 21(Pt 1):89-96. PubMed ID: 24365921 [TBL] [Abstract][Full Text] [Related]
12. In situ high P-T Raman spectroscopy and laser heating of carbon dioxide. Santoro M; Lin JF; Mao HK; Hemley RJ J Chem Phys; 2004 Aug; 121(6):2780-7. PubMed ID: 15281882 [TBL] [Abstract][Full Text] [Related]
14. X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram. Santamaría-Pérez D; Ross M; Errandonea D; Mukherjee GD; Mezouar M; Boehler R J Chem Phys; 2009 Mar; 130(12):124509. PubMed ID: 19334853 [TBL] [Abstract][Full Text] [Related]
15. The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity. Shim SH; Duffy TS; Shen G Nature; 2001 May; 411(6837):571-4. PubMed ID: 11385568 [TBL] [Abstract][Full Text] [Related]
16. Laser-heating system for high-pressure X-ray diffraction at the Extreme Conditions beamline I15 at Diamond Light Source. Anzellini S; Kleppe AK; Daisenberger D; Wharmby MT; Giampaoli R; Boccato S; Baron MA; Miozzi F; Keeble DS; Ross A; Gurney S; Thompson J; Knap G; Booth M; Hudson L; Hawkins D; Walter MJ; Wilhelm H J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1860-1868. PubMed ID: 30407199 [TBL] [Abstract][Full Text] [Related]
17. Strategies for reducing preferred orientation and strain in powder samples for high-pressure synchrotron X-ray diffraction in diamond-anvil cells. Tschauner O; McClure J; Nicol M J Synchrotron Radiat; 2005 Sep; 12(Pt 5):626-31. PubMed ID: 16120986 [TBL] [Abstract][Full Text] [Related]
18. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells. Sinogeikin SV; Smith JS; Rod E; Lin C; Kenney-Benson C; Shen G Rev Sci Instrum; 2015 Jul; 86(7):072209. PubMed ID: 26233349 [TBL] [Abstract][Full Text] [Related]
19. A portable on-axis laser-heating system for near-90° X-ray spectroscopy: application to ferropericlase and iron silicide. Spiekermann G; Kupenko I; Petitgirard S; Harder M; Nyrow A; Weis C; Albers C; Biedermann N; Libon L; Sahle CJ; Cerantola V; Glazyrin K; Konôpková Z; Sinmyo R; Morgenroth W; Sergueev I; Yavaş H; Dubrovinsky L; Tolan M; Sternemann C; Wilke M J Synchrotron Radiat; 2020 Mar; 27(Pt 2):414-424. PubMed ID: 32153280 [TBL] [Abstract][Full Text] [Related]
20. X-ray emission spectroscopy with a laser-heated diamond anvil cell: a new experimental probe of the spin state of iron in the Earth's interior. Lin JF; Struzhkin VV; Jacobsen SD; Shen G; Prakapenka VB; Mao HK; Hemley RJ J Synchrotron Radiat; 2005 Sep; 12(Pt 5):637-41. PubMed ID: 16120988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]