BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22611119)

  • 1. Machine learning approaches for the discovery of gene-gene interactions in disease data.
    Upstill-Goddard R; Eccles D; Fliege J; Collins A
    Brief Bioinform; 2013 Mar; 14(2):251-60. PubMed ID: 22611119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.
    Motsinger-Reif AA; Dudek SM; Hahn LW; Ritchie MD
    Genet Epidemiol; 2008 May; 32(4):325-40. PubMed ID: 18265411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational intelligence in bioinformatics: SNP/haplotype data in genetic association study for common diseases.
    Kelemen A; Vasilakos AV; Liang Y
    IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):841-7. PubMed ID: 19556205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction.
    Moore JH
    Adv Genet; 2010; 72():101-16. PubMed ID: 21029850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher order interactions: detection of epistasis using machine learning and evolutionary computation.
    Nelson RM; Kierczak M; Carlborg O
    Methods Mol Biol; 2013; 1019():499-518. PubMed ID: 23756908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of machine learning and data mining methods to detect associations of rare and common variants with complex traits.
    Lu AT; Austin E; Bonner A; Huang HH; Cantor RM
    Genet Epidemiol; 2014 Sep; 38 Suppl 1():S81-5. PubMed ID: 25112194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SVM-based generalized multifactor dimensionality reduction approaches for detecting gene-gene interactions in family studies.
    Fang YH; Chiu YF
    Genet Epidemiol; 2012 Feb; 36(2):88-98. PubMed ID: 22851472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural networks.
    Yang ZR
    Methods Mol Biol; 2010; 609():197-222. PubMed ID: 20221921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning in genome-wide association studies.
    Szymczak S; Biernacka JM; Cordell HJ; González-Recio O; König IR; Zhang H; Sun YV
    Genet Epidemiol; 2009; 33 Suppl 1():S51-7. PubMed ID: 19924717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brief Survey on Machine Learning in Epistasis.
    Chicco D; Faultless T
    Methods Mol Biol; 2021; 2212():169-179. PubMed ID: 33733356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning in bioinformatics: a brief survey and recommendations for practitioners.
    Bhaskar H; Hoyle DC; Singh S
    Comput Biol Med; 2006 Oct; 36(10):1104-25. PubMed ID: 16226240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility.
    Moore JH; Gilbert JC; Tsai CT; Chiang FT; Holden T; Barney N; White BC
    J Theor Biol; 2006 Jul; 241(2):252-61. PubMed ID: 16457852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology.
    Koo CL; Liew MJ; Mohamad MS; Salleh AH
    Biomed Res Int; 2013; 2013():432375. PubMed ID: 24228248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GLIDE: GPU-based linear regression for detection of epistasis.
    Kam-Thong T; Azencott CA; Cayton L; Pütz B; Altmann A; Karbalai N; Sämann PG; Schölkopf B; Müller-Myhsok B; Borgwardt KM
    Hum Hered; 2012; 73(4):220-36. PubMed ID: 22965145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data mining, neural nets, trees--problems 2 and 3 of Genetic Analysis Workshop 15.
    Ziegler A; DeStefano AL; König IR; Bardel C; Brinza D; Bull S; Cai Z; Glaser B; Jiang W; Lee KE; Li CX; Li J; Li X; Majoram P; Meng Y; Nicodemus KK; Platt A; Schwarz DF; Shi W; Shugart YY; Stassen HH; Sun YV; Won S; Wang W; Wahba G; Zagaar UA; Zhao Z
    Genet Epidemiol; 2007; 31 Suppl 1():S51-60. PubMed ID: 18046765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of multifactor dimensionality reduction to genome-wide data using the R package 'MDR'.
    Winham S
    Methods Mol Biol; 2013; 1019():479-98. PubMed ID: 23756907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Genomic approaches to bone and joint diseases. A genome-wide approach for analysis of polygenic diseases].
    Sato H; Emi M
    Clin Calcium; 2008 Feb; 18(2):176-81. PubMed ID: 18245886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering gene-environment interactions in glioblastoma through a comprehensive data integration bioinformatics method.
    Kunkle B; Yoo C; Roy D
    Neurotoxicology; 2013 Mar; 35():1-14. PubMed ID: 23261424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical epistasis networks reduce the computational complexity of searching three-locus genetic models.
    Hu T; Andrew AS; Karagas MR; Moore JH
    Pac Symp Biocomput; 2013; ():397-408. PubMed ID: 23424144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.