These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22611130)

  • 1. regSNPs: a strategy for prioritizing regulatory single nucleotide substitutions.
    Teng M; Ichikawa S; Padgett LR; Wang Y; Mort M; Cooper DN; Koller DL; Foroud T; Edenberg HJ; Econs MJ; Liu Y
    Bioinformatics; 2012 Jul; 28(14):1879-86. PubMed ID: 22611130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. regSNPs-ASB: A Computational Framework for Identifying Allele-Specific Transcription Factor Binding From ATAC-seq Data.
    Xu S; Feng W; Lu Z; Yu CY; Shao W; Nakshatri H; Reiter JL; Gao H; Chu X; Wang Y; Liu Y
    Front Bioeng Biotechnol; 2020; 8():886. PubMed ID: 32850739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding.
    Zeng H; Hashimoto T; Kang DD; Gifford DK
    Bioinformatics; 2016 Feb; 32(4):490-6. PubMed ID: 26476779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants.
    Lin H; Hargreaves KA; Li R; Reiter JL; Wang Y; Mort M; Cooper DN; Zhou Y; Zhang C; Eadon MT; Dolan ME; Ipe J; Skaar TC; Liu Y
    Genome Biol; 2019 Nov; 20(1):254. PubMed ID: 31779641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GWAS analyzer: integrating genotype, phenotype and public annotation data for genome-wide association study analysis.
    Fong C; Ko DC; Wasnick M; Radey M; Miller SI; Brittnacher M
    Bioinformatics; 2010 Feb; 26(4):560-4. PubMed ID: 20053839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of breast cancer associated variants that modulate transcription factor binding.
    Liu Y; Walavalkar NM; Dozmorov MG; Rich SS; Civelek M; Guertin MJ
    PLoS Genet; 2017 Sep; 13(9):e1006761. PubMed ID: 28957321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential promoter activity by nucleotide substitution at a type 2 diabetes genome-wide association study signal upstream of the wolframin gene.
    Ryu J; Lee C
    J Diabetes; 2016 Mar; 8(2):253-9. PubMed ID: 25800097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GWAS Integrator: a bioinformatics tool to explore human genetic associations reported in published genome-wide association studies.
    Yu W; Yesupriya A; Wulf A; Hindorff LA; Dowling N; Khoury MJ; Gwinn M
    Eur J Hum Genet; 2011 Oct; 19(10):1095-9. PubMed ID: 21610748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cis-regulatory variations: a study of SNPs around genes showing cis-linkage in segregating mouse populations.
    GuhaThakurta D; Xie T; Anand M; Edwards SW; Li G; Wang SS; Schadt EE
    BMC Genomics; 2006 Sep; 7():235. PubMed ID: 16978413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular genetic studies of complex phenotypes.
    Marian AJ
    Transl Res; 2012 Feb; 159(2):64-79. PubMed ID: 22243791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LDGIdb: a database of gene interactions inferred from long-range strong linkage disequilibrium between pairs of SNPs.
    Wang MC; Chen FC; Chen YZ; Huang YT; Chuang TJ
    BMC Res Notes; 2012 May; 5():212. PubMed ID: 22551073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational and functional characterization of four SNPs in the SOST locus associated with osteoporosis.
    Ye W; Wang Y; Mei B; Hou S; Liu X; Wu G; Qin L; Zhao K; Huang Q
    Bone; 2018 Mar; 108():132-144. PubMed ID: 29307778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HapBoost: a fast approach to boosting haplotype association analyses in genome-wide association studies.
    Wan X; Yang C; Yang Q; Zhao H; Yu W
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):207-12. PubMed ID: 23702557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prioritizing genetic variants for causality on the basis of preferential linkage disequilibrium.
    Zhu Q; Ge D; Heinzen EL; Dickson SP; Urban TJ; Zhu M; Maia JM; He M; Zhao Q; Shianna KV; Goldstein DB
    Am J Hum Genet; 2012 Sep; 91(3):422-34. PubMed ID: 22939045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking disease associations with regulatory information in the human genome.
    Schaub MA; Boyle AP; Kundaje A; Batzoglou S; Snyder M
    Genome Res; 2012 Sep; 22(9):1748-59. PubMed ID: 22955986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoporosis- and obesity-risk interrelationships: an epigenetic analysis of GWAS-derived SNPs at the developmental gene
    Zhang X; Ehrlich KC; Yu F; Hu X; Meng XH; Deng HW; Shen H; Ehrlich M
    Epigenetics; 2020; 15(6-7):728-749. PubMed ID: 31975641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global inference of disease-causing single nucleotide variants from exome sequencing data.
    Wu M; Chen T; Jiang R
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):468. PubMed ID: 28155632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Predisposition to the Mortality in Septic Shock Patients: From GWAS to the Identification of a Regulatory Variant Modulating the Activity of a
    Rosier F; Brisebarre A; Dupuis C; Baaklini S; Puthier D; Brun C; Pradel LC; Rihet P; Payen D
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic and genetic alterations and their influence on gene regulation in chronic lymphocytic leukemia.
    Huang D; Ovcharenko I
    BMC Genomics; 2017 Mar; 18(1):236. PubMed ID: 28302063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current computational methods for prioritizing candidate regulatory polymorphisms.
    Montgomery S
    Methods Mol Biol; 2009; 569():89-114. PubMed ID: 19623487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.