These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22611874)

  • 1. Computational analysis of blood clot dissolution using a vibrating catheter tip.
    Lee JH; Oh JS; Yoon BR; Choi SH; Rhee K; Jho JY; Han MH
    Proc Inst Mech Eng H; 2012 Apr; 226(4):337-40. PubMed ID: 22611874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of endovascular vibrating polymer actuator probe for mechanical thrombolysis: in vivo study.
    Jung SC; Yoon BR; Oh JS; Choi SH; Han MH; Lee JY; Cho HR; Rhee K; Jho JY
    ASAIO J; 2012; 58(5):503-8. PubMed ID: 22820916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of endovascular vibrating polymer actuator probe for mechanical thrombolysis: a phantom study.
    Choi SH; Yoon BR; Oh JS; Han MH; Lee JY; Cho HR; Kim MJ; Rhee K; Jho JY
    ASAIO J; 2011; 57(4):286-92. PubMed ID: 21701271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of blood clot degradation fragment sizes in relation to plasma flow velocity.
    Bajd F; Vidmar J; Blinc A; Serša I
    Gen Physiol Biophys; 2012 Sep; 31(3):237-45. PubMed ID: 23047936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration analysis of cubic rotary-linear piezoelectric actuator.
    Mashimo T; Toyama S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):844-8. PubMed ID: 21507762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a multi-physics modelling framework for thrombolysis under the influence of blood flow.
    Piebalgs A; Xu XY
    J R Soc Interface; 2015 Dec; 12(113):20150949. PubMed ID: 26655469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration characteristics of a circular cylindrical panel piezoelectric transducer.
    Yang Z; Yang J; Hu Y; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2327-35. PubMed ID: 18986881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood clot dissolution dynamics simulation during thrombolytic therapy.
    Sersa I; Tratar G; Blinc A
    J Chem Inf Model; 2005; 45(6):1686-90. PubMed ID: 16309274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the shear stress distribution between a functionally graded piezoelectric actuator and an elastic substrate and the reduction of its concentration.
    Yang J; Jin Z; Li J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2360-2. PubMed ID: 19049914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole blood clot dissolution: in vitro study on the effects of permeation pressure.
    Jeong WW; Jang AS; Rhee K
    Proc Inst Mech Eng H; 2007 May; 221(4):357-63. PubMed ID: 17605393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A concept of thrombolysis as a corrosion-erosion process verified by optical microscopy.
    Bajd F; Serša I
    Microcirculation; 2012 Oct; 19(7):632-41. PubMed ID: 22612378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turbulent axially directed flow of plasma containing rt-PA promotes thrombolysis of non-occlusive whole blood clots in vitro.
    Tratar G; Blinc A; Strukelj M; Mikac U; Sersa I
    Thromb Haemost; 2004 Mar; 91(3):487-96. PubMed ID: 14983224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible benefits of catheters with lateral holes in coronary thrombus aspiration: a computational study for different clot viscosities and vacuum pressures.
    Soleimani S; Dubini G; Pennati G
    Artif Organs; 2014 Oct; 38(10):845-55. PubMed ID: 24571089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic response of micropipettes during piezo-assisted intracytoplasmic sperm injection.
    Karzar-Jeddi M; Olgac N; Fan TH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041908. PubMed ID: 22181176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions.
    Nisar A; Afzulpurkar N; Tuantranont A; Mahaisavariya B
    Cardiovasc Eng; 2008 Dec; 8(4):203-18. PubMed ID: 19030990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical analysis of forced injection of enzyme during thrombolysis.
    Jeong WW; Rhee K
    Comput Biol Med; 2007 May; 37(5):655-62. PubMed ID: 16890215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplified formulae to investigate flexural vibration characteristics of piezoelectric tubes in ultrasonic micro-actuators.
    Zhang H; Zhang SY; Fan L
    Ultrasonics; 2010 Mar; 50(3):397-402. PubMed ID: 19818979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive low frequency vibration as a potential emergency adjunctive treatment for heart attack and stroke. An in vitro flow model.
    Yohannes FG; Hoffmann AK
    J Thromb Thrombolysis; 2008 Jun; 25(3):251-8. PubMed ID: 17534694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo high-intensity focused ultrasound thrombolysis.
    Wright C; Hynynen K; Goertz D
    Invest Radiol; 2012 Apr; 47(4):217-25. PubMed ID: 22373533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional scanning probe driven by a solenoid-based single actuator for optical coherence tomography.
    Min EJ; Shin JG; Kim Y; Lee BH
    Opt Lett; 2011 Jun; 36(11):1963-5. PubMed ID: 21633416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.