These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22612378)

  • 1. A concept of thrombolysis as a corrosion-erosion process verified by optical microscopy.
    Bajd F; Serša I
    Microcirculation; 2012 Oct; 19(7):632-41. PubMed ID: 22612378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of blood clot degradation fragment sizes in relation to plasma flow velocity.
    Bajd F; Vidmar J; Blinc A; Serša I
    Gen Physiol Biophys; 2012 Sep; 31(3):237-45. PubMed ID: 23047936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model for the dissolution of non-occlusive blood clots in fast tangential blood flow.
    Sersa I; Tratar G; Mikac U; Blinc A
    Biorheology; 2007; 44(1):1-16. PubMed ID: 17502685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic clot fragment evidence of biochemo-mechanical degradation effects in thrombolysis.
    Bajd F; Vidmar J; Blinc A; Sersa I
    Thromb Res; 2010 Aug; 126(2):137-43. PubMed ID: 20580981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of blood clot fragmentation during flow-mediated thrombolysis.
    Bajd F; Serša I
    Biophys J; 2013 Mar; 104(5):1181-90. PubMed ID: 23473501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the effect of laminar axially directed blood flow on the dissolution of non-occlusive blood clots.
    Sersa I; Vidmar J; Grobelnik B; Mikac U; Tratar G; Blinc A
    Phys Med Biol; 2007 Jun; 52(11):2969-85. PubMed ID: 17505083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood clot dissolution dynamics simulation during thrombolytic therapy.
    Sersa I; Tratar G; Blinc A
    J Chem Inf Model; 2005; 45(6):1686-90. PubMed ID: 16309274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbulent axially directed flow of plasma containing rt-PA promotes thrombolysis of non-occlusive whole blood clots in vitro.
    Tratar G; Blinc A; Strukelj M; Mikac U; Sersa I
    Thromb Haemost; 2004 Mar; 91(3):487-96. PubMed ID: 14983224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow through clots determines the rate and pattern of fibrinolysis.
    Blinc A; Kennedy SD; Bryant RG; Marder VJ; Francis CW
    Thromb Haemost; 1994 Feb; 71(2):230-5. PubMed ID: 8191404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiparameter test of clot formation and fibrinolysis for in-vitro drug screening.
    Kostka B; Para J; Sikora J
    Blood Coagul Fibrinolysis; 2007 Oct; 18(7):611-8. PubMed ID: 17890947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and biophysical conditions for blood clot lysis.
    Sabovic M; Blinc A
    Pflugers Arch; 2000; 440(5 Suppl):R134-6. PubMed ID: 11005642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the ADC and T2 mapping in an assessment of blood-clot lysability.
    Vidmar J; Blinc A; Sersa I
    NMR Biomed; 2010 Jan; 23(1):34-40. PubMed ID: 19642088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational analysis of blood clot dissolution using a vibrating catheter tip.
    Lee JH; Oh JS; Yoon BR; Choi SH; Rhee K; Jho JY; Han MH
    Proc Inst Mech Eng H; 2012 Apr; 226(4):337-40. PubMed ID: 22611874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro clot lysis as a potential indicator of thrombus resistance to fibrinolysis--study in healthy subjects and correlation with blood fibrinolytic parameters.
    Colucci M; Scopece S; Gelato AV; Dimonte D; Semeraro N
    Thromb Haemost; 1997 Apr; 77(4):725-9. PubMed ID: 9134650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering design of optimal strategies for blood clot dissolution.
    Diamond SL
    Annu Rev Biomed Eng; 1999; 1():427-62. PubMed ID: 11701496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of flow on lysis of plasma clots in a plasma environment.
    Sakharov DV; Rijken DC
    Thromb Haemost; 2000 Mar; 83(3):469-74. PubMed ID: 10744155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residence time in niches of stagnant flow determines fibrin clot formation in an arterial branching model--detailed flow analysis and experimental results.
    Reininger AJ; Reininger CB; Heinzmann U; Wurzinger LJ
    Thromb Haemost; 1995 Sep; 74(3):916-22. PubMed ID: 8571321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect and mechanism of recombinant hirudin on fibrinolysis].
    Li M; Zhang RJ; Cao GX; Wan WX; Zhang LF; Jin J
    Yao Xue Xue Bao; 2006 Sep; 41(9):814-8. PubMed ID: 17111825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thrombolytic and antithrombotic efficacy of the platelet GPIIb-IIIa antagonist DMP728.
    Mousa SA; Forsythe MS; Diemer M; Bozarth JM; Reilly TM
    Coron Artery Dis; 1994 Nov; 5(11):919-27. PubMed ID: 7719524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow.
    Xu S; Xu Z; Kim OV; Litvinov RI; Weisel JW; Alber M
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29142014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.