BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22612790)

  • 1. Impact of fresh and saline water flooding on leaf gas exchange in two Italian provenances of Tamarix africana Poiret.
    Abou Jaoudé R; de Dato G; Palmegiani M; De Angelis P
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():109-17. PubMed ID: 22612790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water.
    Teakle NL; Colmer TD; Pedersen O
    Plant Cell Environ; 2014 Oct; 37(10):2339-49. PubMed ID: 24393094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods.
    Herzog M; Konnerup D; Pedersen O; Winkel A; Colmer TD
    Plant Cell Environ; 2018 May; 41(5):885-897. PubMed ID: 27925226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest.
    Herrera A; Tezara W; Marín O; Rengifo E
    Physiol Plant; 2008 Sep; 134(1):41-8. PubMed ID: 18444960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference in sodium spatial distribution in the shoot of two canola cultivars under saline stress.
    Yang Y; Zheng Q; Liu M; Long X; Liu Z; Shen Q; Guo S
    Plant Cell Physiol; 2012 Jun; 53(6):1083-92. PubMed ID: 22514091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.
    Bhattarai SP; Midmore DJ
    J Integr Plant Biol; 2009 Jul; 51(7):675-88. PubMed ID: 19566646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment.
    Debez A; Koyro HW; Grignon C; Abdelly C; Huchzermeyer B
    Physiol Plant; 2008 Jun; 133(2):373-85. PubMed ID: 18346075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses.
    Wang C; Yang C; Gao C; Wang Y
    Tree Physiol; 2009 Dec; 29(12):1607-19. PubMed ID: 19808707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.
    Mielke MS; Schaffer B
    Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex-specific responses and tolerances of Populus cathayana to salinity.
    Chen F; Chen L; Zhao H; Korpelainen H; Li C
    Physiol Plant; 2010 Oct; 140(2):163-73. PubMed ID: 20561244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salinity tolerance of 'Valencia' orange trees on rootstocks with contrasting salt tolerance is not improved by moderate shade.
    García-Sánchez F; Syvertsen JP; Martínez V; Melgar JC
    J Exp Bot; 2006; 57(14):3697-706. PubMed ID: 16980596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils.
    Manousaki E; Kadukova J; Papadantonakis N; Kalogerakis N
    Environ Res; 2008 Mar; 106(3):326-32. PubMed ID: 17543928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient leaf ion partitioning, an overriding condition for abscisic acid-controlled stomatal and leaf growth responses to NaCl salinization in two legumes.
    Sibole JV; Cabot C; Poschenrieder C; Barceló J
    J Exp Bot; 2003 Sep; 54(390):2111-9. PubMed ID: 12925667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Photosynthetic characters of Quercus acutissima from different provenances under effects of salt stress].
    Wang B; Yu MK; Sun HJ; Cheng XR; Shan QH; Fang YM
    Ying Yong Sheng Tai Xue Bao; 2009 Aug; 20(8):1817-24. PubMed ID: 19947197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber).
    Vaz M; Pereira JS; Gazarini LC; David TS; David JS; Rodrigues A; Maroco J; Chaves MM
    Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation.
    Xu H; Li Y; Xu G; Zou T
    Plant Cell Environ; 2007 Apr; 30(4):399-409. PubMed ID: 17324227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity?
    Limousin JM; Misson L; Lavoir AV; Martin NK; Rambal S
    Plant Cell Environ; 2010 May; 33(5):863-75. PubMed ID: 20051039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf nitrogen productivity is the major factor behind the growth reduction induced by long-term salt stress.
    Nieves M; Nieves-Cordones M; Poorter H; Simón MD
    Tree Physiol; 2011 Jan; 31(1):92-101. PubMed ID: 21389005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: Arsenic and NaCl.
    Sghaier DB; Duarte B; Bankaji I; Caçador I; Sleimi N
    J Photochem Photobiol B; 2015 Aug; 149():204-14. PubMed ID: 26093232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.