BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 22612821)

  • 1. Inhibition and interneuron distribution in the dentate gyrus of p35 knockout mice.
    Knight LS; Wenzel HJ; Schwartzkroin PA
    Epilepsia; 2012 Jun; 53 Suppl 1():161-70. PubMed ID: 22612821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epileptogenesis in the dentate gyrus: a critical perspective.
    Dudek FE; Sutula TP
    Prog Brain Res; 2007; 163():755-73. PubMed ID: 17765749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dentate development in organotypic hippocampal slice cultures from p35 knockout mice.
    Wenzel HJ; Tamse CT; Schwartzkroin PA
    Dev Neurosci; 2007; 29(1-2):99-112. PubMed ID: 17148953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent excitation of granule cells with basal dendrites and low interneuron density and inhibitory postsynaptic current frequency in the dentate gyrus of macaque monkeys.
    Austin JE; Buckmaster PS
    J Comp Neurol; 2004 Aug; 476(3):205-18. PubMed ID: 15269966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereologic estimation of hippocampal GluR2/3- and calretinin-immunoreactive hilar neurons (presumptive mossy cells) in two mouse models of temporal lobe epilepsy.
    Volz F; Bock HH; Gierthmuehlen M; Zentner J; Haas CA; Freiman TM
    Epilepsia; 2011 Sep; 52(9):1579-89. PubMed ID: 21635231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system.
    Sutula TP; Dudek FE
    Prog Brain Res; 2007; 163():541-63. PubMed ID: 17765737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapamycin suppresses the recurrent excitatory circuits of dentate gyrus in a mouse model of temporal lobe epilepsy.
    Tang H; Long H; Zeng C; Li Y; Bi F; Wang J; Qian H; Xiao B
    Biochem Biophys Res Commun; 2012 Mar; 420(1):199-204. PubMed ID: 22414694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical dysplasia associated with spontaneous seizures.
    Wenzel HJ; Robbins CA; Tsai LH; Schwartzkroin PA
    J Neurosci; 2001 Feb; 21(3):983-98. PubMed ID: 11157084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats.
    Wenzel HJ; Woolley CS; Robbins CA; Schwartzkroin PA
    Hippocampus; 2000; 10(3):244-60. PubMed ID: 10902894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitability changes within transverse lamellae of dentate granule cells and their longitudinal spread following orthodromic or antidromic activation.
    Lømo T
    Hippocampus; 2009 Jul; 19(7):633-48. PubMed ID: 19115390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit.
    Patel LS; Wenzel HJ; Schwartzkroin PA
    J Neurosci; 2004 Oct; 24(41):9005-14. PubMed ID: 15483119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential upregulation of extracellular matrix molecules associated with the appearance of granule cell dispersion and mossy fiber sprouting during epileptogenesis in a murine model of temporal lobe epilepsy.
    Heck N; Garwood J; Loeffler JP; Larmet Y; Faissner A
    Neuroscience; 2004; 129(2):309-24. PubMed ID: 15501589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Dormant basket cell" hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat.
    Sloviter RS; Zappone CA; Harvey BD; Bumanglag AV; Bender RA; Frotscher M
    J Comp Neurol; 2003 Apr; 459(1):44-76. PubMed ID: 12629666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy.
    Sloviter RS
    Ann Neurol; 1994 Jun; 35(6):640-54. PubMed ID: 8210220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early loss of interneurons and delayed subunit-specific changes in GABA(A)-receptor expression in a mouse model of mesial temporal lobe epilepsy.
    Bouilleret V; Loup F; Kiener T; Marescaux C; Fritschy JM
    Hippocampus; 2000; 10(3):305-24. PubMed ID: 10902900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased dentate gyrus excitability in neuroligin-2-deficient mice in vivo.
    Jedlicka P; Hoon M; Papadopoulos T; Vlachos A; Winkels R; Poulopoulos A; Betz H; Deller T; Brose N; Varoqueaux F; Schwarzacher SW
    Cereb Cortex; 2011 Feb; 21(2):357-67. PubMed ID: 20530218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats.
    Buckmaster PS; Dudek FE
    J Comp Neurol; 1997 Sep; 385(3):385-404. PubMed ID: 9300766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cocaine- and amphetamine-regulated transcript peptide (CART) is a selective marker of rat granule cells and of human mossy cells in the hippocampal dentate gyrus.
    Seress L; Abrahám H; Dóczi T; Lázár G; Kozicz T
    Neuroscience; 2004; 125(1):13-24. PubMed ID: 15051141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuropeptide Y regulates recurrent mossy fiber synaptic transmission less effectively in mice than in rats: Correlation with Y2 receptor plasticity.
    Tu B; Jiao Y; Herzog H; Nadler JV
    Neuroscience; 2006 Dec; 143(4):1085-94. PubMed ID: 17027162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal lobe epilepsy.
    Hofmann G; Balgooyen L; Mattis J; Deisseroth K; Buckmaster PS
    Epilepsia; 2016 Jun; 57(6):977-83. PubMed ID: 27030321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.