These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 22612878)
1. Biochemical and growth acclimation of birch to night temperatures: genotypic similarities and differences. Mäenpää M; Ossipov V; Kontunen-Soppela S; Keinänen M; Rousi M; Oksanen E Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():36-43. PubMed ID: 22612878 [TBL] [Abstract][Full Text] [Related]
2. Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Kasurinen A; Biasi C; Holopainen T; Rousi M; Mäenpää M; Oksanen E Tree Physiol; 2012 Jun; 32(6):737-51. PubMed ID: 22363070 [TBL] [Abstract][Full Text] [Related]
3. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. Xiong FS; Mueller EC; Day TA Am J Bot; 2000 May; 87(5):700-10. PubMed ID: 10811794 [TBL] [Abstract][Full Text] [Related]
4. Combination treatment of elevated UVB radiation, CO2 and temperature has little effect on silver birch (Betula pendula) growth and phytochemistry. Lavola A; Nybakken L; Rousi M; Pusenius J; Petrelius M; Kellomäki S; Julkunen-Tiitto R Physiol Plant; 2013 Dec; 149(4):499-514. PubMed ID: 23496144 [TBL] [Abstract][Full Text] [Related]
5. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range. Wertin TM; McGuire MA; Teskey RO Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670 [TBL] [Abstract][Full Text] [Related]
6. Growth temperature modulates the spatial variability of leaf morphology and chemical elements within crowns of climatically divergent Acer rubrum genotypes. Shahba MA; Bauerle WL Tree Physiol; 2009 Jul; 29(7):869-77. PubMed ID: 19364703 [TBL] [Abstract][Full Text] [Related]
7. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings. Pumpanen J; Heinonsalo J; Rasilo T; Villemot J; Ilvesniemi H Tree Physiol; 2012 Jun; 32(6):724-36. PubMed ID: 22345325 [TBL] [Abstract][Full Text] [Related]
8. Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone. Riikonen J; Kontunen-Soppela S; Vapaavuori E; Tervahauta A; Tuomainen M; Oksanen E Tree Physiol; 2013 Mar; 33(3):311-9. PubMed ID: 23425688 [TBL] [Abstract][Full Text] [Related]
9. Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.). Wittmann C; Matyssek R; Pfanz H; Humar M Environ Pollut; 2007 Nov; 150(2):258-66. PubMed ID: 17374426 [TBL] [Abstract][Full Text] [Related]
10. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature. Zhao H; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2012 Nov; 32(11):1325-38. PubMed ID: 22918961 [TBL] [Abstract][Full Text] [Related]
11. Strategy by latitude? Higher photosynthetic capacity and root mass fraction in northern than southern silver birch (Betula pendula Roth) in uniform growing conditions. Tenkanen A; Suprun S; Oksanen E; Keinänen M; Keski-Saari S; Kontunen-Soppela S Tree Physiol; 2021 Jun; 41(6):974-991. PubMed ID: 33171495 [TBL] [Abstract][Full Text] [Related]
12. Photosynthesis, nutrient accumulation and growth of two Betula species exposed to waterlogging in late dormancy and in the early growing season. Wang AF; Roitto M; Lehto T; Sutinen S; Heinonen J; Zhang G; Repo T Tree Physiol; 2017 Jun; 37(6):767-778. PubMed ID: 28338895 [TBL] [Abstract][Full Text] [Related]
13. Temperature dependency of bark photosynthesis in beech (Fagus sylvatica L.) and birch (Betula pendula Roth.) trees. Wittmann C; Pfanz H J Exp Bot; 2007; 58(15-16):4293-306. PubMed ID: 18182432 [TBL] [Abstract][Full Text] [Related]
14. Localized stem chilling alters carbon processes in the adjacent stem and in source leaves. De Schepper V; Vanhaecke L; Steppe K Tree Physiol; 2011 Nov; 31(11):1194-203. PubMed ID: 22001166 [TBL] [Abstract][Full Text] [Related]
15. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Costa E Silva F; Shvaleva A; Broetto F; Ortuño MF; Rodrigues ML; Almeida MH; Chaves MM; Pereira JS Tree Physiol; 2009 Jan; 29(1):77-86. PubMed ID: 19203934 [TBL] [Abstract][Full Text] [Related]
16. Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species. Yamori W; Noguchi K; Hikosaka K; Terashima I Plant Cell Physiol; 2009 Feb; 50(2):203-15. PubMed ID: 19054809 [TBL] [Abstract][Full Text] [Related]
17. Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Zaragoza-Castells J; Sánchez-Gómez D; Valladares F; Hurry V; Atkin OK Plant Cell Environ; 2007 Jul; 30(7):820-33. PubMed ID: 17547654 [TBL] [Abstract][Full Text] [Related]
19. Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. Centritto M; Brilli F; Fodale R; Loreto F Tree Physiol; 2011 Mar; 31(3):275-86. PubMed ID: 21367745 [TBL] [Abstract][Full Text] [Related]
20. Predicting ecosystem carbon balance in a warming Arctic: the importance of long-term thermal acclimation potential and inhibitory effects of light on respiration. McLaughlin BC; Xu CY; Rastetter EB; Griffin KL Glob Chang Biol; 2014 Jun; 20(6):1901-12. PubMed ID: 24677488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]