BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22613052)

  • 1. QM/MM study of catalytic mechanism of Xylanase Cex from Cellulomonas fimi.
    Liu J; Zhang C; Xu D
    J Mol Graph Model; 2012 Jul; 37():67-76. PubMed ID: 22613052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi.
    MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG
    Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the cellulose/xylan specificity of the beta-1,4-glycanase cex from Cellulomonas fimi through crystallography and mutation.
    Notenboom V; Birsan C; Warren RA; Withers SG; Rose DR
    Biochemistry; 1998 Apr; 37(14):4751-8. PubMed ID: 9537990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of xylobiose hydrolysis by GH43 β-xylosidase.
    Barker IJ; Petersen L; Reilly PJ
    J Phys Chem B; 2010 Nov; 114(46):15389-93. PubMed ID: 20973564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of glycoside hydrolysis: A comparative QM/MM molecular dynamics analysis for wild type and Y69F mutant retaining xylanases.
    Soliman ME; Pernía JJ; Greig IR; Williams IH
    Org Biomol Chem; 2009 Dec; 7(24):5236-44. PubMed ID: 20024120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi Xylanase Cex through NMR spectroscopic analysis.
    Poon DK; Withers SG; McIntosh LP
    J Biol Chem; 2007 Jan; 282(3):2091-100. PubMed ID: 17121820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosynthase-based synthesis of xylo-oligosaccharides using an engineered retaining xylanase from Cellulomonas fimi.
    Kim YW; Fox DT; Hekmat O; Kantner T; McIntosh LP; Warren RA; Withers SG
    Org Biomol Chem; 2006 May; 4(10):2025-32. PubMed ID: 16688347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi.
    White A; Withers SG; Gilkes NR; Rose DR
    Biochemistry; 1994 Oct; 33(42):12546-52. PubMed ID: 7918478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a Cellulomonas fimi exoglucanase/xylanase-endoglucanase gene fusion which improves microbial degradation of cellulosic biomass.
    Duedu KO; French CE
    Enzyme Microb Technol; 2016 Nov; 93-94():113-121. PubMed ID: 27702471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of the nature and function of module 10 in a family F/10 xylanase FXYN of Streptomyces olivaceoviridis E-86 by module shuffling with the Cex of Cellulomonas fimi and by site-directed mutagenesis.
    Kaneko S; Kuno A; Fujimoto Z; Shimizu D; Machida S; Sato Y; Yura K; Go M; Mizuno H; Taira K; Kusakabe I; Hayashi K
    FEBS Lett; 1999 Oct; 460(1):61-6. PubMed ID: 10571062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostability and irreversible activity loss of exoglucanase/xylanase Cex from Cellulomonas fimi.
    Nikolova PV; Creagh AL; Duff SJ; Haynes CA
    Biochemistry; 1997 Feb; 36(6):1381-8. PubMed ID: 9063886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase.
    Sidhu G; Withers SG; Nguyen NT; McIntosh LP; Ziser L; Brayer GD
    Biochemistry; 1999 Apr; 38(17):5346-54. PubMed ID: 10220321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment of both uniform and differential binding energy in enzymatic catalysis: xylanases from families 10 and 11.
    Wicki J; Schloegl J; Tarling CA; Withers SG
    Biochemistry; 2007 Jun; 46(23):6996-7005. PubMed ID: 17503782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray crystallographic study of xylopentaose binding to Pseudomonas fluorescens xylanase A.
    Leggio LL; Jenkins J; Harris GW; Pickersgill RW
    Proteins; 2000 Nov; 41(3):362-73. PubMed ID: 11025547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosidic-bond hydrolysis mechanism catalyzed by cellulase Cel7A from Trichoderma reesei: a comprehensive theoretical study by performing MD, QM, and QM/MM calculations.
    Li J; Du L; Wang L
    J Phys Chem B; 2010 Nov; 114(46):15261-8. PubMed ID: 21028861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase.
    McIntosh LP; Hand G; Johnson PE; Joshi MD; Körner M; Plesniak LA; Ziser L; Wakarchuk WW; Withers SG
    Biochemistry; 1996 Aug; 35(31):9958-66. PubMed ID: 8756457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from cellulomonas fimi.
    Zechel DL; Reid SP; Stoll D; Nashiru O; Warren RA; Withers SG
    Biochemistry; 2003 Jun; 42(23):7195-204. PubMed ID: 12795616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O-glycosylation of a recombinant carbohydrate-binding module mutant secreted by Pichia pastoris.
    Boraston AB; Sandercock L; Warren RA; Kilburn DG
    J Mol Microbiol Biotechnol; 2003; 5(1):29-36. PubMed ID: 12673059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes.
    Fernandes AC; Fontes CM; Gilbert HJ; Hazlewood GP; Fernandes TH; Ferreira LM
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):105-10. PubMed ID: 10432306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties and applications of microbial beta-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium.
    Jordan DB; Wagschal K
    Appl Microbiol Biotechnol; 2010 May; 86(6):1647-58. PubMed ID: 20352422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.