These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22613134)

  • 1. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis.
    Hadjinicolaou AE; Leung RT; Garrett DJ; Ganesan K; Fox K; Nayagam DA; Shivdasani MN; Meffin H; Ibbotson MR; Prawer S; O'Brien BJ
    Biomaterials; 2012 Aug; 33(24):5812-20. PubMed ID: 22613134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications.
    Garrett DJ; Ganesan K; Stacey A; Fox K; Meffin H; Prawer S
    J Neural Eng; 2012 Feb; 9(1):016002. PubMed ID: 22156061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
    Sekirnjak C; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2006 Jun; 95(6):3311-27. PubMed ID: 16436479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis.
    Ganesan K; Garrett DJ; Ahnood A; Shivdasani MN; Tong W; Turnley AM; Fox K; Meffin H; Prawer S
    Biomaterials; 2014 Jan; 35(3):908-15. PubMed ID: 24383127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode.
    Jensen RJ
    Exp Eye Res; 2012 Jun; 99():71-7. PubMed ID: 22542904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit.
    Yamauchi Y; Franco LM; Jackson DJ; Naber JF; Ziv RO; Rizzo JF; Kaplan HJ; Enzmann V
    J Neural Eng; 2005 Mar; 2(1):S48-56. PubMed ID: 15876654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration.
    Habib AG; Cameron MA; Suaning GJ; Lovell NH; Morley JW
    J Neural Eng; 2013 Jun; 10(3):036013. PubMed ID: 23612906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preparation for studying electrical stimulation of the retina in vivo in rat.
    Baig-Silva MS; Hathcock CD; Hetling JR
    J Neural Eng; 2005 Mar; 2(1):S29-38. PubMed ID: 15876652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of rabbit retinal ganglion cells to subretinal electrical stimulation using a silicon-based microphotodiode array.
    Yang YT; Lin PK; Wan C; Yang WC; Lin LJ; Wu CY; Chiao CC
    Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9353-61. PubMed ID: 22058338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes.
    Abramian M; Lovell NH; Morley JW; Suaning GJ; Dokos S
    J Neural Eng; 2011 Jun; 8(3):035004. PubMed ID: 21593545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal aspects of pulsed electrical stimuli on the responses of rabbit retinal ganglion cells.
    Jensen RJ; Ziv OR; Rizzo JF; Scribner D; Johnson L
    Exp Eye Res; 2009 Dec; 89(6):972-9. PubMed ID: 19766116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: Model, production and in vivo biocompatibility.
    Bendali A; Rousseau L; Lissorgues G; Scorsone E; Djilas M; Dégardin J; Dubus E; Fouquet S; Benosman R; Bergonzo P; Sahel JA; Picaud S
    Biomaterials; 2015 Oct; 67():73-83. PubMed ID: 26210174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy.
    Hébert C; Cottance M; Degardin J; Scorsone E; Rousseau L; Lissorgues G; Bergonzo P; Picaud S
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():77-84. PubMed ID: 27612691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo feasibility of epiretinal stimulation using ultrananocrystalline diamond electrodes.
    Shivdasani MN; Evans M; Burns O; Yeoh J; Allen PJ; Nayagam DAX; Villalobos J; Abbott CJ; Luu CD; Opie NL; Sabu A; Saunders AL; McPhedran M; Cardamone L; McGowan C; Maxim V; Williams RA; Fox KE; Cicione R; Garrett DJ; Ahnood A; Ganesan K; Meffin H; Burkitt AN; Prawer S; Williams CE; Shepherd RK
    J Neural Eng; 2020 Aug; 17(4):045014. PubMed ID: 32659750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed retinal nerve cell growth for use in a retinal prosthesis interface.
    Leng T; Wu P; Mehenti NZ; Bent SF; Marmor MF; Blumenkranz MS; Fishman HA
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4132-7. PubMed ID: 15505066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses.
    Ahnood A; Escudie MC; Cicione R; Abeyrathne CD; Ganesan K; Fox KE; Garrett DJ; Stacey A; Apollo NV; Lichter SG; Thomas CD; Tran N; Meffin H; Prawer S
    Biomed Microdevices; 2015; 17(3):9952. PubMed ID: 25877379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode.
    Jensen RJ; Rizzo JF
    Exp Eye Res; 2006 Aug; 83(2):367-73. PubMed ID: 16616739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.