These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22613144)

  • 1. Application of explicitly localized molecular orbitals to electronic structure calculations.
    de Silva P; Makowski M; Korchowiec J
    Chimia (Aarau); 2012; 66(4):178-81. PubMed ID: 22613144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General orbital invariant MP2-F12 theory.
    Werner HJ; Adler TB; Manby FR
    J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular potentials of the methane dimer calculated with Møller-Plesset perturbation theory and density functional theory.
    Li AH; Chao SD
    J Chem Phys; 2006 Sep; 125(9):094312. PubMed ID: 16965085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast orbital localization scheme in molecular fragments resolution.
    de Silva P; Giebułtowski M; Korchowiec J
    Phys Chem Chem Phys; 2012 Jan; 14(2):546-52. PubMed ID: 22121505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic local Møller-Plesset second order perturbation theory method applied to molecular crystals: study of solid NH3 and CO2 using extended basis sets.
    Maschio L; Usvyat D; Schütz M; Civalleri B
    J Chem Phys; 2010 Apr; 132(13):134706. PubMed ID: 20387953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Hartree-Fock and Kohn-Sham orbitals in the basis set superposition error for systems linked by hydrogen bonds.
    Garza J; Ramírez JZ; Vargas R
    J Phys Chem A; 2005 Feb; 109(4):643-51. PubMed ID: 16833391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid correlation models based on active-space partitioning: seeking accurate O(N5) ab initio methods for bond breaking.
    Bochevarov AD; Temelso B; Sherrill CD
    J Chem Phys; 2006 Aug; 125(5):054109. PubMed ID: 16942205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme.
    Kristensen K; Jørgensen P; Jansík B; Kjærgaard T; Reine S
    J Chem Phys; 2012 Sep; 137(11):114102. PubMed ID: 22998244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pipek-Mezey localization of occupied and virtual orbitals.
    Høyvik IM; Jansik B; Jørgensen P
    J Comput Chem; 2013 Jun; 34(17):1456-62. PubMed ID: 23553349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A local second-order Møller-Plesset method with localized orbitals: a parallelized efficient electron correlation method.
    Nakao Y; Hirao K
    J Chem Phys; 2004 Apr; 120(14):6375-80. PubMed ID: 15267526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory.
    Werner HJ
    J Chem Phys; 2008 Sep; 129(10):101103. PubMed ID: 19044900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Gaussian-type geminals in local second-order Møller-Plesset perturbation theory.
    Polly R; Werner HJ; Dahle P; Taylor PR
    J Chem Phys; 2006 Jun; 124(23):234107. PubMed ID: 16821907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explicitly correlated second-order Møller-Plesset perturbation theory for unrestricted Hartree-Fock reference functions with exact satisfaction of cusp conditions.
    Bokhan D; Bernadotte S; Ten-No S
    J Chem Phys; 2009 Aug; 131(8):084105. PubMed ID: 19725606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetizability and rotational g tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals.
    Loibl S; Schütz M
    J Chem Phys; 2014 Jul; 141(2):024108. PubMed ID: 25028000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation.
    Valeev EF; Janssen CL
    J Chem Phys; 2004 Jul; 121(3):1214-27. PubMed ID: 15260663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r(12) perturbation theory.
    Klopper W
    J Chem Phys; 2004 Jun; 120(23):10890-5. PubMed ID: 15268119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second-order Møller-Plesset perturbation energy obtained from divide-and-conquer Hartree-Fock density matrix.
    Kobayashi M; Akama T; Nakai H
    J Chem Phys; 2006 Nov; 125(20):204106. PubMed ID: 17144689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved supermolecular second order Møller-Plesset intermolecular interaction energies using time-dependent density functional response theory.
    Hesselmann A
    J Chem Phys; 2008 Apr; 128(14):144112. PubMed ID: 18412428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.