These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22613147)

  • 1. Influence of solutes on hydration and lubricity of dextran brushes.
    Goren T; Crockett R; Spencer ND
    Chimia (Aarau); 2012; 66(4):192-5. PubMed ID: 22613147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications.
    Song X; Man J; Qiu Y; Wang J; Liu J; Li R; Zhang Y; Li J; Li J; Chen Y
    Acta Biomater; 2024 Feb; 175():76-105. PubMed ID: 38128641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load-induced transitions in the lubricity of adsorbed poly(L-lysine)-g-dextran as a function of polysaccharide chain density.
    Rosenberg KJ; Goren T; Crockett R; Spencer ND
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3020-5. PubMed ID: 21749097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach for measuring the intrinsic nanoscale thickness of polymer brushes by means of atomic force microscopy: application of a compressible fluid model.
    Cuellar JL; Llarena I; Iturri JJ; Donath E; Moya SE
    Nanoscale; 2013 Dec; 5(23):11679-85. PubMed ID: 24101034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivalent counterions diminish the lubricity of polyelectrolyte brushes.
    Yu J; Jackson NE; Xu X; Morgenstern Y; Kaufman Y; Ruths M; de Pablo JJ; Tirrell M
    Science; 2018 Jun; 360(6396):1434-1438. PubMed ID: 29954973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent dependent friction force response of polystyrene brushes prepared by surface initiated polymerization.
    Limpoco FT; Advincula RC; Perry SS
    Langmuir; 2007 Nov; 23(24):12196-201. PubMed ID: 17949015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces.
    Nagase K; Kobayashi J; Kikuchi A; Akiyama Y; Kanazawa H; Okano T
    Langmuir; 2008 Jan; 24(2):511-7. PubMed ID: 18085801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-nonsolvency effects for surface-initiated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes in alcohol/water mixtures.
    Edmondson S; Nguyen NT; Lewis AL; Armes SP
    Langmuir; 2010 May; 26(10):7216-26. PubMed ID: 20380474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface forces between telechelic brushes revisited: the origin of a weak attraction.
    Cao D; Wu J
    Langmuir; 2006 Mar; 22(6):2712-8. PubMed ID: 16519473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotribology of surface-grafted PEG layers in an aqueous environment.
    Drobek T; Spencer ND
    Langmuir; 2008 Feb; 24(4):1484-8. PubMed ID: 17939696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioadhesive control of plasma proteins and blood cells from umbilical cord blood onto the interface grafted with zwitterionic polymer brushes.
    Chang Y; Chang Y; Higuchi A; Shih YJ; Li PT; Chen WY; Tsai EM; Hsiue GH
    Langmuir; 2012 Mar; 28(9):4309-17. PubMed ID: 22268580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of protein adsorption to architectural variations in a protein-resistant polymer brush containing engineered nanoscale adhesive sites.
    Gon S; Santore MM
    Langmuir; 2011 Dec; 27(24):15083-91. PubMed ID: 22040182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite thin film by hydrogen-bonding assembly of polymer brush and poly(vinylpyrrolidone).
    Yang S; Zhang Y; Wang L; Hong S; Xu J; Chen Y; Li C
    Langmuir; 2006 Jan; 22(1):338-43. PubMed ID: 16378441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes.
    Bruening ML; Dotzauer DM; Jain P; Ouyang L; Baker GL
    Langmuir; 2008 Aug; 24(15):7663-73. PubMed ID: 18507420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and morphological study of thick benzyl methacrylate-styrene diblock copolymer brushes.
    Munirasu S; Karunakaran RG; Rühe J; Dhamodharan R
    Langmuir; 2011 Nov; 27(21):13284-92. PubMed ID: 21928787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of surface properties using fluorinated polymer brushes produced by surface-initiated controlled radical polymerization.
    Andruzzi L; Hexemer A; Li X; Ober CK; Kramer EJ; Galli G; Chiellini E; Fischer DA
    Langmuir; 2004 Nov; 20(24):10498-506. PubMed ID: 15544378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of polymer brush architecture on antibiofouling properties.
    Gunkel G; Weinhart M; Becherer T; Haag R; Huck WT
    Biomacromolecules; 2011 Nov; 12(11):4169-72. PubMed ID: 21932841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphologies of planar polyelectrolyte brushes in a poor solvent: molecular dynamics simulations and scaling analysis.
    Carrillo JM; Dobrynin AV
    Langmuir; 2009 Nov; 25(22):13158-68. PubMed ID: 19899820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(HEMA) brushes emerging as a new platform for direct detection of food pathogen in milk samples.
    Rodriguez-Emmenegger C; Avramenko OA; Brynda E; Skvor J; Alles AB
    Biosens Bioelectron; 2011 Jul; 26(11):4545-51. PubMed ID: 21664120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.