These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 226133)

  • 21. Biochemical and biophysical studies on cytochrome C oxidase. XIV. The reaction with cytochrome as studied by pulse radiolysis.
    Van Buuren JH; Van Gelder BF; Wilting J; Braams R
    Biochim Biophys Acta; 1974 Mar; 333(3):421-9. PubMed ID: 4367959
    [No Abstract]   [Full Text] [Related]  

  • 22. Complexation of iron hexacyanides by cytochrome c. Evidence for electron exchange at the exposed heme edge.
    Stellwagen E; Cass RD
    J Biol Chem; 1975 Mar; 250(6):2095-8. PubMed ID: 234955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model studies for molybdenum enzymes. Reduction of cytochrome c complexes by mu-oxo-bis[oxodihydroxo(L-cysteinato)molybdate(V)].
    Lawrence GD; Spence JT
    Biochemistry; 1977 Jul; 16(14):3087-90. PubMed ID: 196624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ion binding to cytochrome c studied by nuclear magnetic quadrupole relaxation.
    Andersson T; Thulin E; Forsén S
    Biochemistry; 1979 Jun; 18(12):2487-93. PubMed ID: 36133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytochrome c binding to enzymes and membranes.
    Nicholls P
    Biochim Biophys Acta; 1974 Dec; 346(3-4):261-310. PubMed ID: 4374236
    [No Abstract]   [Full Text] [Related]  

  • 26. Cyanide binding to the cytochrome c ferric heme octapeptide. A model for anion binding to the active site of high spin ferric heme proteins.
    Blumenthal DC; Kassner RJ
    J Biol Chem; 1980 Jun; 255(12):5859-63. PubMed ID: 6247350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interpretation of effects of pH on rate constants for the oxidation of three ferrocytochromes c-551 with [Fe(CN)6]3- and [Co(phen)3]3+, and assignment of pKa values.
    de Silva DG; Sykes AG
    Biochim Biophys Acta; 1988 Feb; 952(3):334-41. PubMed ID: 2827782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preferred sites for electron transfer between cytochrome c and iron and cobalt complexes.
    Butler J; Chapman SK; Davies DM; Sykes AG; Speck SH; Osheroff N; Margoliash E
    J Biol Chem; 1983 May; 258(10):6400-4. PubMed ID: 6304037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic studies on the oxidation of cytochrome b(5) Phe35 mutants with cytochrome c, plastocyanin and inorganic complexes.
    Yao P; Wang YH; Sun BY; Xie Y; Hirota S; Yamauchi O; Huang ZX
    J Biol Inorg Chem; 2002 Apr; 7(4-5):375-83. PubMed ID: 11941495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate cytochrome c derivatives.
    Kotlyar AB; Borovok N; Hazani M
    Biochemistry; 1997 Dec; 36(50):15828-33. PubMed ID: 9398314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The chemical reactivity of fully maleylated cytochrome c.
    Aviram I; Schejter A
    J Biol Chem; 1980 Apr; 255(7):3020-4. PubMed ID: 6244304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The kinetics of oxidation of reduced cytochrome c by ferricyanide derivatives.
    Cassatt JC; Marini CP
    Biochemistry; 1974 Dec; 13(26):5323-8. PubMed ID: 4373036
    [No Abstract]   [Full Text] [Related]  

  • 33. Determination of the equilibrium constant for the binding of ferricytochrome c to phospholipid vesicles and the effect of binding on the reduction rate of cytochrome c.
    Cannon JB; Erman JE
    Biochim Biophys Acta; 1980 Jul; 600(1):19-26. PubMed ID: 6249360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphate binding by cytochrome c. Specific binding site involved in the formation and reactivity of a complex of ferricytochrome c, ferrous ion, and phosphate.
    Taborsky G; McCollum K
    J Biol Chem; 1979 Aug; 254(15):7069-75. PubMed ID: 222755
    [No Abstract]   [Full Text] [Related]  

  • 35. The mechanism of reduction of cytochrome c as studied by pulse radiolysis.
    Wilting J; Van Buuren KJ; Braams R; Van Gelder BF
    Biochim Biophys Acta; 1975 Feb; 376(2):285-97. PubMed ID: 234749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct measurements of intramolecular electron transfer rates between cytochrome c and cytochrome c peroxidase: effects of exothermicity and primary sequence on rate.
    Cheung E; Taylor K; Kornblatt JA; English AM; McLendon G; Miller JR
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1330-3. PubMed ID: 3006047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of ligand-binding and oxidation-reduction reactions of cytochrome c from horse heart and Candida krusei.
    Creutz C; Sutin N
    J Biol Chem; 1974 Nov; 249(21):6788-95. PubMed ID: 4371651
    [No Abstract]   [Full Text] [Related]  

  • 38. Role of configurational gating in intracomplex electron transfer from cytochrome c to the radical cation in cytochrome c peroxidase.
    Mei H; Wang K; Peffer N; Weatherly G; Cohen DS; Miller M; Pielak G; Durham B; Millett F
    Biochemistry; 1999 May; 38(21):6846-54. PubMed ID: 10346906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase).
    Wilson MT; Ranson RJ; Masiakowski P; Czarnecka E; Brunori M
    Eur J Biochem; 1977 Jul; 77(1):193-9. PubMed ID: 20304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proceedings: Electron transfer between azurin and iron hexacyanide.
    Goldberg M; Pecht I
    Isr J Med Sci; 1975 Nov; 11(11):1182. PubMed ID: 1205757
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.