These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 22613621)

  • 81. Multibubble Sonoluminescence from a Theoretical Perspective.
    Yasui K
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361777
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Numerical simulations of the aspherical collapse of laser and acoustically generated bubbles.
    Tsiglifis K; Pelekasis NA
    Ultrason Sonochem; 2007 Apr; 14(4):456-69. PubMed ID: 17208501
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Mist separation and sonochemiluminescence under pulsed ultrasound.
    Tuziuti T
    J Phys Chem A; 2012 Apr; 116(14):3593-7. PubMed ID: 22443489
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble.
    Tzanakis I; Eskin DG; Georgoulas A; Fytanidis DK
    Ultrason Sonochem; 2014 Mar; 21(2):866-78. PubMed ID: 24176799
    [TBL] [Abstract][Full Text] [Related]  

  • 85. [Enhancement of luminol-dependent chemiluminescence in an aqueous NaCl/H2O2 solution by argon].
    Voeĭkov VL; Khimich MV
    Biofizika; 2002; 47(1):5-11. PubMed ID: 11855290
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Plasma quenching by air during single-bubble sonoluminescence.
    Flannigan DJ; Suslick KS
    J Phys Chem A; 2006 Aug; 110(30):9315-8. PubMed ID: 16869678
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effects of pulsed ultrasound on the adsorption of n-alkyl anionic surfactants at the gas/solution interface of cavitation bubbles.
    Yang L; Sostaric JZ; Rathman JF; Kuppusamy P; Weavers LK
    J Phys Chem B; 2007 Feb; 111(6):1361-7. PubMed ID: 17249713
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Sonoluminescence of Na atom from NaCl solutions doped with ethanol.
    Choi PK; Abe S; Hayashi Y
    J Phys Chem B; 2008 Jan; 112(3):918-22. PubMed ID: 18161961
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Study into mechanisms of the enhancement of multibubble sonoluminescence emission in interacting fields of different frequencies.
    Ciuti P; Dezhkunov NV; Francescutto A; Calligaris F; Sturman F
    Ultrason Sonochem; 2003 Oct; 10(6):337-41. PubMed ID: 12927609
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Influence of carbon nano-dots in water on sonoluminescence.
    Song D; Xu W; Luo M; Zhang M; Wen H; Cheng X; Luo X; Wang Z
    Nanoscale; 2021 Sep; 13(33):14130-14138. PubMed ID: 34477694
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Direct sonication of acetic acid in aqueous solutions.
    Findik S; Gündüz G; Gündüz E
    Ultrason Sonochem; 2006 Apr; 13(3):203-7. PubMed ID: 16406831
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Plasma core at the center of a sonoluminescing bubble.
    Bemani F; Sadighi-Bonabi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013004. PubMed ID: 23410423
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Sonocatalytic facilitation of hydroxyl radical generation in the presence of TiO2.
    Shimizu N; Ogino C; Dadjour MF; Ninomiya K; Fujihira A; Sakiyama K
    Ultrason Sonochem; 2008 Sep; 15(6):988-94. PubMed ID: 18534893
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.
    Liu HL; Hsieh CM
    Ultrason Sonochem; 2009 Mar; 16(3):431-8. PubMed ID: 18951828
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effect of surfactants on inertial cavitation activity in a pulsed acoustic field.
    Lee J; Kentish S; Matula TJ; Ashokkumar M
    J Phys Chem B; 2005 Sep; 109(35):16860-5. PubMed ID: 16853145
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Use of NH (A
    Pflieger R; Ouerhani T; Belmonte T; Nikitenko SI
    Phys Chem Chem Phys; 2017 Oct; 19(38):26272-26279. PubMed ID: 28933497
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effects of alcohols on multi-bubble sonoluminescence spectra.
    Hayashi Y; Choi PK
    Ultrasonics; 2006 Dec; 44 Suppl 1():e421-5. PubMed ID: 17005229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.