BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22613762)

  • 1. Structural studies on the oligomeric transition of a small heat shock protein, StHsp14.0.
    Hanazono Y; Takeda K; Yohda M; Miki K
    J Mol Biol; 2012 Sep; 422(1):100-8. PubMed ID: 22613762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimer structure and conformational variability in the N-terminal region of an archaeal small heat shock protein, StHsp14.0.
    Takeda K; Hayashi T; Abe T; Hirano Y; Hanazono Y; Yohda M; Miki K
    J Struct Biol; 2011 Apr; 174(1):92-9. PubMed ID: 21195185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. StHsp14.0, a small heat shock protein of Sulfolobus tokodaii strain 7, protects denatured proteins from aggregation in the partially dissociated conformation.
    Abe T; Oka T; Nakagome A; Tsukada Y; Yasunaga T; Yohda M
    J Biochem; 2011 Oct; 150(4):403-9. PubMed ID: 21659385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer.
    Hilario E; Martin FJ; Bertolini MC; Fan L
    J Mol Biol; 2011 Apr; 408(1):74-86. PubMed ID: 21315085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the IXI/V motif in oligomer assembly and function of StHsp14.0, a small heat shock protein from the acidothermophilic archaeon, Sulfolobus tokodaii strain 7.
    Saji H; Iizuka R; Yoshida T; Abe T; Kidokoro S; Ishii N; Yohda M
    Proteins; 2008 May; 71(2):771-82. PubMed ID: 17979194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active-State Structures of a Small Heat-Shock Protein Revealed a Molecular Switch for Chaperone Function.
    Liu L; Chen JY; Yang B; Wang FH; Wang YH; Yun CH
    Structure; 2015 Nov; 23(11):2066-75. PubMed ID: 26439766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli.
    Jiao W; Qian M; Li P; Zhao L; Chang Z
    J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of non-toxic Aβ fibrils by small heat shock protein under heat-stress conditions.
    Sakono M; Utsumi A; Zako T; Abe T; Yohda M; Maeda M
    Biochem Biophys Res Commun; 2013 Jan; 430(4):1259-64. PubMed ID: 23261462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization and heavy-atom derivatization of StHsp14.0, a small heat-shock protein from Sulfolobus tokodaii.
    Hayashi T; Abe T; Takeda K; Akiyama N; Yohda M; Miki K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Oct; 65(Pt 10):1007-10. PubMed ID: 19851008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regions outside the alpha-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization.
    Chen J; Feige MJ; Franzmann TM; Bepperling A; Buchner J
    J Mol Biol; 2010 Apr; 398(1):122-31. PubMed ID: 20171228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wrapping the alpha-crystallin domain fold in a chaperone assembly.
    Stamler R; Kappé G; Boelens W; Slingsby C
    J Mol Biol; 2005 Oct; 353(1):68-79. PubMed ID: 16165157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region.
    Kundu M; Sen PC; Das KP
    Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and biophysical characterization of small heat shock proteins from sugarcane. Involvement of a specific region located at the N-terminus with substrate specificity.
    Tiroli AO; Ramos CH
    Int J Biochem Cell Biol; 2007; 39(4):818-31. PubMed ID: 17336576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the N-terminal region of the crenarchaeal sHsp, StHsp14.0, in thermal-induced disassembly of the complex and molecular chaperone activity.
    Usui K; Hatipoglu OF; Ishii N; Yohda M
    Biochem Biophys Res Commun; 2004 Feb; 315(1):113-8. PubMed ID: 15013433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6.
    Weeks SD; Baranova EV; Heirbaut M; Beelen S; Shkumatov AV; Gusev NB; Strelkov SV
    J Struct Biol; 2014 Mar; 185(3):342-54. PubMed ID: 24382496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure and function of an unusual dimeric Hsp20.1 provide insight into the thermal protection mechanism of small heat shock proteins.
    Liu L; Chen J; Yang B; Wang Y
    Biochem Biophys Res Commun; 2015 Mar; 458(2):429-34. PubMed ID: 25660449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a small heat-shock protein.
    Kim KK; Kim R; Kim SH
    Nature; 1998 Aug; 394(6693):595-9. PubMed ID: 9707123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oligomeric plasticity of Hsp20 of Sulfolobus acidocaldarius protects environment-induced protein aggregation and membrane destabilization.
    Roy M; Gupta S; Patranabis S; Ghosh A
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2549-2565. PubMed ID: 30293966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure, stability, and nucleic acid binding of the hyperthermophile protein Sso10b2.
    Biyani K; Kahsai MA; Clark AT; Armstrong TL; Edmondson SP; Shriver JW
    Biochemistry; 2005 Nov; 44(43):14217-30. PubMed ID: 16245938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and biochemical characterization of two small heat shock proteins from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7.
    Usui K; Ishii N; Kawarabayasi Y; Yohda M
    Protein Sci; 2004 Jan; 13(1):134-44. PubMed ID: 14691229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.