These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22614099)

  • 1. Enantioselective dynamic process reduction of α- and β-tetralone and stereoinversion of resulting alcohols in a selected strain culture.
    Janeczko T; Panek A; Swizdor A; Dmochowska-Gładysz J; Kostrzewa-Susłow E
    Curr Microbiol; 2012 Aug; 65(2):189-94. PubMed ID: 22614099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Didymosphaeria igniaria: a new microorganism useful for the enantioselective reduction of aryl-aliphatic ketones.
    Świzdor A; Janeczko T; Dmochowska-Gładysz J
    J Ind Microbiol Biotechnol; 2010 Nov; 37(11):1121-30. PubMed ID: 20544255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of stereocontrol in guanidine-bisurea bifunctional organocatalyst that promotes α-hydroxylation of tetralone-derived β-ketoesters: asymmetric synthesis of β- and γ-substituted tetralone derivatives via organocatalytic oxidative kinetic resolution.
    Odagi M; Furukori K; Yamamoto Y; Sato M; Iida K; Yamanaka M; Nagasawa K
    J Am Chem Soc; 2015 Feb; 137(5):1909-15. PubMed ID: 25580909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric α-hydroxylation of tetralone-derived β-ketoesters by using a guanidine-urea bifunctional organocatalyst in the presence of cumene hydroperoxide.
    Odagi M; Furukori K; Watanabe T; Nagasawa K
    Chemistry; 2013 Dec; 19(49):16740-5. PubMed ID: 24281815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative Study on Asymmetric Reduction of Ketones Using the Growing and Resting Cells of Marine-Derived Fungi.
    Liu H; Chen BS; de Souza FZR; Liu L
    Mar Drugs; 2018 Feb; 16(2):. PubMed ID: 29443943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of marine-derived fungi for preparation of enantiomerically pure alcohols.
    Liu H; de Souza FZR; Liu L; Chen BS
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1317-1330. PubMed ID: 29264774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly enantioselective production of (R)-halohydrins with whole cells of Rhodotorula rubra KCh 82 culture.
    Janeczko T; Dymarska M; Kostrzewa-Susłow E
    Int J Mol Sci; 2014 Dec; 15(12):22392-404. PubMed ID: 25486054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2-tetralol.
    Shin HS; Jain MK; Chartrain M; Zeikus JG
    Appl Microbiol Biotechnol; 2001 Nov; 57(4):506-10. PubMed ID: 11762596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system.
    Liu J; Li Z
    Biotechnol Bioeng; 2019 Mar; 116(3):536-542. PubMed ID: 30536736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselectivity of hydroxylation of racemic piperitone by fungi.
    Grudniewska A; Gniłka R; Wawrzeńczyk C
    Chirality; 2010 Nov; 22(10):929-35. PubMed ID: 20872669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant-Mediated Enantioselective Transformation of Indan-1-one and Indan-1-ol. Part 2.
    Mączka W; Wińska K; Grabarczyk M; Galek R
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31783666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantiomeric scaffolding of α-tetralone and related scaffolds by EKR (enzymatic kinetic resolution) and stereoselective ketoreduction with ketoreductases.
    Bhuniya R; Nanda S
    Org Biomol Chem; 2012 Jan; 10(3):536-47. PubMed ID: 22102058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of beta-ketosulfides to produce chiral beta-hydroxysulfoxides.
    Holland HL; Brown FM; Barrett F; French J; Johnson DV
    J Ind Microbiol Biotechnol; 2003 May; 30(5):292-301. PubMed ID: 12759809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic asymmetric synthesis of (R)-1-tetralol using Lactobacillus paracasei BD101.
    Kalay E; Şahin E
    Chirality; 2021 Aug; 33(8):447-453. PubMed ID: 33970507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly enantioselective reduction of beta,beta-disubstituted aromatic nitroalkenes catalyzed by Clostridium sporogenes.
    Fryszkowska A; Fisher K; Gardiner JM; Stephens GM
    J Org Chem; 2008 Jun; 73(11):4295-8. PubMed ID: 18452336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New 6,19-oxidoandrostan derivatives obtained by biotransformation in environmental filamentous fungi cultures.
    Kozłowska E; Matera A; Sycz J; Kancelista A; Kostrzewa-Susłow E; Janeczko T
    Microb Cell Fact; 2020 Feb; 19(1):37. PubMed ID: 32066453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible clustering of magnetic nanobiocatalysts for high-performance biocatalysis and easy catalyst recycling.
    Ngo TP; Zhang W; Wang W; Li Z
    Chem Commun (Camb); 2012 May; 48(38):4585-7. PubMed ID: 22450568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactones 42. Stereoselective enzymatic/microbial synthesis of optically active isomers of whisky lactone.
    Boratyński F; Smuga M; Wawrzeńczyk C
    Food Chem; 2013 Nov; 141(1):419-27. PubMed ID: 23768375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic resolution and stereoinversion of secondary alcohols by chemo-enzymatic processes.
    Azerad R; Buisson D
    Curr Opin Biotechnol; 2000 Dec; 11(6):565-71. PubMed ID: 11102790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly enantiomeric reduction of acetophenone and its derivatives by locally isolated Rhodotorula glutinis.
    Zilbeyaz K; Kurbanoglu EB
    Chirality; 2010 Oct; 22(9):849-54. PubMed ID: 20803750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.