These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22614118)

  • 81. [Role of the ABC transporters A1 and G1, key reverse cholesterol transport proteins, in atherosclerosis].
    Demina EP; Miroshnikova VV; Schwarzman AL
    Mol Biol (Mosk); 2016; 50(2):223-30. PubMed ID: 27239842
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Knockdown expression and hepatic deficiency reveal an atheroprotective role for SR-BI in liver and peripheral tissues.
    Huby T; Doucet C; Dachet C; Ouzilleau B; Ueda Y; Afzal V; Rubin E; Chapman MJ; Lesnik P
    J Clin Invest; 2006 Oct; 116(10):2767-76. PubMed ID: 16964311
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Dihydromyricetin ameliorates foam cell formation via LXRα-ABCA1/ABCG1-dependent cholesterol efflux in macrophages.
    Zeng Y; Peng Y; Tang K; Wang YQ; Zhao ZY; Wei XY; Xu XL
    Biomed Pharmacother; 2018 May; 101():543-552. PubMed ID: 29505925
    [TBL] [Abstract][Full Text] [Related]  

  • 84. ABCG1 rs57137919G>a polymorphism is functionally associated with varying gene expression and apoptosis of macrophages.
    Liu F; Wang W; Xu Y; Wang Y; Chen LF; Fang Q; Yan XW
    PLoS One; 2014; 9(6):e97044. PubMed ID: 24972087
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Caveolin-1 and ATP binding cassette transporter A1 and G1-mediated cholesterol efflux.
    Wang F; Gu HM; Zhang DW
    Cardiovasc Hematol Disord Drug Targets; 2014; 14(2):142-8. PubMed ID: 24801727
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Significance of Cholesterol-Binding Motifs in ABCA1, ABCG1, and SR-B1 Structure.
    Dergunov AD; Savushkin EV; Dergunova LV; Litvinov DY
    J Membr Biol; 2019 Feb; 252(1):41-60. PubMed ID: 30519876
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Expression, localization, and functional model of cholesterol transporters in lactating and nonlactating mammary tissues of murine, bovine, and human origin.
    Mani O; Körner M; Sorensen MT; Sejrsen K; Wotzkow C; Ontsouka CE; Friis RR; Bruckmaier RM; Albrecht C
    Am J Physiol Regul Integr Comp Physiol; 2010 Aug; 299(2):R642-54. PubMed ID: 20445153
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Cross-inhibition of SR-BI- and ABCA1-mediated cholesterol transport by the small molecules BLT-4 and glyburide.
    Nieland TJ; Chroni A; Fitzgerald ML; Maliga Z; Zannis VI; Kirchhausen T; Krieger M
    J Lipid Res; 2004 Jul; 45(7):1256-65. PubMed ID: 15102890
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Expressions of lipoprotein receptors and cholesterol efflux regulatory proteins during luteolysis in bovine corpus luteum.
    Horihata K; Yoshioka S; Sano M; Yamamoto Y; Kimura K; Skarzynski DJ; Okuda K
    Reprod Fertil Dev; 2017 Jul; 29(7):1280-1286. PubMed ID: 27185011
    [TBL] [Abstract][Full Text] [Related]  

  • 90. ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL.
    Vaughan AM; Oram JF
    J Lipid Res; 2006 Nov; 47(11):2433-43. PubMed ID: 16902247
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Characterization of placental cholesterol transport: ABCA1 is a potential target for in utero therapy of Smith-Lemli-Opitz syndrome.
    Lindegaard ML; Wassif CA; Vaisman B; Amar M; Wasmuth EV; Shamburek R; Nielsen LB; Remaley AT; Porter FD
    Hum Mol Genet; 2008 Dec; 17(23):3806-13. PubMed ID: 18775956
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs.
    Zhang S; Li L; Wang J; Zhang T; Ye T; Wang S; Xing D; Chen W
    Clin Chim Acta; 2021 May; 516():100-110. PubMed ID: 33545111
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Gene Expression Profiling of Peripheral Blood Mononuclear Cells in Type 2 Diabetes: An Exploratory Study.
    Fakhoury HMA; Elahi MA; Al Sarheed S; Al Dubayee M; Alshahrani A; Zhra M; Almassri A; Aljada A
    Medicina (Kaunas); 2022 Dec; 58(12):. PubMed ID: 36557031
    [No Abstract]   [Full Text] [Related]  

  • 94. Subjects with low plasma HDL cholesterol levels are characterized by an inflammatory and oxidative phenotype.
    Holven KB; Retterstøl K; Ueland T; Ulven SM; Nenseter MS; Sandvik M; Narverud I; Berge KE; Ose L; Aukrust P; Halvorsen B
    PLoS One; 2013; 8(11):e78241. PubMed ID: 24244297
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Dissecting the Impact of Vascular Smooth Muscle Cell ABCA1 versus ABCG1 Expression on Cholesterol Efflux and Macrophage-like Cell Transdifferentiation: The Role of SR-BI.
    Oladosu O; Esobi IC; Powell RR; Bruce T; Stamatikos A
    J Cardiovasc Dev Dis; 2023 Oct; 10(10):. PubMed ID: 37887863
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Extracellular Vesicles Secreted by Adipose Tissue during Obesity and Type 2 Diabetes Mellitus Influence Reverse Cholesterol Transport-Related Gene Expression in Human Macrophages.
    Dracheva KV; Pobozheva IA; Anisimova KA; Panteleeva AA; Garaeva LA; Balandov SG; Hamid ZM; Vasilevsky DI; Pchelina SN; Miroshnikova VV
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928163
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Epigenetic regulation of genes involved in the reverse cholesterol transport through interaction with miRNAs.
    Zaiou M; Rihn BH; Bakillah A
    Front Biosci (Landmark Ed); 2018 Jun; 23(11):2090-2105. PubMed ID: 29772548
    [TBL] [Abstract][Full Text] [Related]  

  • 98. LXR signaling pathways link cholesterol metabolism with risk for prediabetes and diabetes.
    Ding J; Nguyen AT; Lohman K; Hensley MT; Parker D; Hou L; Taylor J; Voora D; Sawyer JK; Boudyguina E; Bancks MP; Bertoni A; Pankow JS; Rotter JI; Goodarzi MO; Tracy RP; Murdoch DM; Duprez A; Rich SS; Psaty BM; Siscovick D; Newgard B; Herrington D; Hoeschele I; Shea S; Stein JH; Patel M; Post W; Jacobs D; Parks JS; Liu Y
    J Clin Invest; 2024 May; 134(10):. PubMed ID: 38747290
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Genomic Variants and Multilevel Regulation of
    Rozhkova AV; Dmitrieva VG; Nosova EV; Dergunov AD; Limborska SA; Dergunova LV
    J Cardiovasc Dev Dis; 2021 Dec; 8(12):. PubMed ID: 34940525
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A preliminary study of the relationship between promoter methylation of the ABCG1, GALNT2 and HMGCR genes and coronary heart disease.
    Peng P; Wang L; Yang X; Huang X; Ba Y; Chen X; Guo J; Lian J; Zhou J
    PLoS One; 2014; 9(8):e102265. PubMed ID: 25084356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.