These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22614130)

  • 1. The path from skin to brain: generation of functional neurons from fibroblasts.
    Abdullah AI; Pollock A; Sun T
    Mol Neurobiol; 2012 Jun; 45(3):586-95. PubMed ID: 22614130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next-generation disease modeling with direct conversion: a new path to old neurons.
    Traxler L; Edenhofer F; Mertens J
    FEBS Lett; 2019 Dec; 593(23):3316-3337. PubMed ID: 31715002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct reprogramming into interneurons: potential for brain repair.
    Pereira M; Birtele M; Rylander Ottosson D
    Cell Mol Life Sci; 2019 Oct; 76(20):3953-3967. PubMed ID: 31250034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forward engineering neuronal diversity using direct reprogramming.
    Tsunemoto RK; Eade KT; Blanchard JW; Baldwin KK
    EMBO J; 2015 Jun; 34(11):1445-55. PubMed ID: 25908841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the Expression Level of the Neuronal Reprogramming Factors for a Successful Reprogramming Outcome.
    Mseis-Jackson N; Sharma M; Li H
    Cells; 2024 Jul; 13(14):. PubMed ID: 39056804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell replacement therapy for central nervous system diseases.
    Tso D; McKinnon RD
    Neural Regen Res; 2015 Sep; 10(9):1356-8. PubMed ID: 26604878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced Neurons for Disease Modeling and Repair: A Focus on Non-fibroblastic Cell Sources in Direct Reprogramming.
    Kim KM; Thaqi M; Peterson DA; Marr RA
    Front Bioeng Biotechnol; 2021; 9():658498. PubMed ID: 33777923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Neuronal Reprogramming: Bridging the Gap Between Basic Science and Clinical Application.
    Vasan L; Park E; David LA; Fleming T; Schuurmans C
    Front Cell Dev Biol; 2021; 9():681087. PubMed ID: 34291049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Brain in a Dish.
    Goodwin SJ
    Postdoc J; 2015 Nov; 3(11):31-35. PubMed ID: 27429994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct conversion of fibroblasts into functional astrocytes by defined transcription factors.
    Caiazzo M; Giannelli S; Valente P; Lignani G; Carissimo A; Sessa A; Colasante G; Bartolomeo R; Massimino L; Ferroni S; Settembre C; Benfenati F; Broccoli V
    Stem Cell Reports; 2015 Jan; 4(1):25-36. PubMed ID: 25556566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and efficient neural conversion of human hematopoietic cells.
    Castaño J; Menendez P; Bruzos-Cidon C; Straccia M; Sousa A; Zabaleta L; Vazquez N; Zubiarrain A; Sonntag KC; Ugedo L; Carvajal-Vergara X; Canals JM; Torrecilla M; Sanchez-Pernaute R; Giorgetti A
    Stem Cell Reports; 2014 Dec; 3(6):1118-31. PubMed ID: 25458894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concise review: Generation of neurons from somatic cells of healthy individuals and neurological patients through induced pluripotency or direct conversion.
    Velasco I; Salazar P; Giorgetti A; Ramos-Mejía V; Castaño J; Romero-Moya D; Menendez P
    Stem Cells; 2014 Nov; 32(11):2811-7. PubMed ID: 24989459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through.
    Jusop AS; Thanaskody K; Tye GJ; Dass SA; Wan Kamarul Zaman WS; Nordin F
    Front Mol Neurosci; 2023; 16():1173433. PubMed ID: 37602192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in the knowledge and therapeutics of schizophrenia, major depression disorder, and bipolar disorder from human brain organoid research.
    Villanueva R
    Front Psychiatry; 2023; 14():1178494. PubMed ID: 37502814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-Induced Pluripotent Stem Cell Technology: Toward the Future of Personalized Psychiatry.
    Alciati A; Reggiani A; Caldirola D; Perna G
    J Pers Med; 2022 Aug; 12(8):. PubMed ID: 36013289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders.
    Olesen MA; Villavicencio-Tejo F; Quintanilla RA
    Transl Neurodegener; 2022 Jul; 11(1):36. PubMed ID: 35787292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A platform of assays for the discovery of anti-Zika small-molecules with activity in a 3D-bioprinted outer-blood-retina model.
    Dorjsuren D; Eastman RT; Song MJ; Yasgar A; Chen Y; Bharti K; Zakharov AV; Jadhav A; Ferrer M; Shi PY; Simeonov A
    PLoS One; 2022; 17(1):e0261821. PubMed ID: 35041689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Potential of Induced Pluripotent Stem Cells to Treat and Model Alzheimer's Disease.
    Schulz JM
    Stem Cells Int; 2021; 2021():5511630. PubMed ID: 34122554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to reprogram human fibroblasts to neurons.
    Xu Z; Su S; Zhou S; Yang W; Deng X; Sun Y; Li L; Li Y
    Cell Biosci; 2020; 10():116. PubMed ID: 33062254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nystagmus-related FRMD7 gene influences the maturation and complexities of neuronal processes in human neurons.
    Pu J; Dai S; Gao T; Hu J; Fang Y; Zheng R; Jin C; Zhang B
    Brain Behav; 2019 Dec; 9(12):e01473. PubMed ID: 31743612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.