These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 22614332)

  • 1. Quantitative modeling of transcriptional regulatory networks by integrating multiple source of knowledge.
    Wang SQ; Li HX
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1555-65. PubMed ID: 22614332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge.
    Wang SQ; Li HX
    BMC Syst Biol; 2012; 6 Suppl 1(Suppl 1):S3. PubMed ID: 23046631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying transcriptional regulatory networks by integrating sequence features and microarray data.
    Liu H
    Bioprocess Biosyst Eng; 2010 May; 33(4):495-505. PubMed ID: 19657679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics-based models of transcriptional regulation with gene sequence.
    Wang S; Shen Y; Hu J
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2469-76. PubMed ID: 26458822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide decoding of hierarchical modular structure of transcriptional regulation by cis-element and expression clustering.
    Leyfer D; Weng Z
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii197-203. PubMed ID: 16204103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting genetic regulatory response using classification.
    Middendorf M; Kundaje A; Wiggins C; Freund Y; Leslie C
    Bioinformatics; 2004 Aug; 20 Suppl 1():i232-40. PubMed ID: 15262804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotype analysis using network motifs derived from changes in regulatory network dynamics.
    Cavelier G; Anastassiou D
    Proteins; 2005 Aug; 60(3):525-46. PubMed ID: 15971229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mixed model approach to identify yeast transcriptional regulatory motifs via microarray experiments.
    Yu X; Chu TM; Gibson G; Wolfinger RD
    Stat Appl Genet Mol Biol; 2004; 3():Article22. PubMed ID: 16646801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational inference of replication and transcription activator regulator activity in herpesvirus from gene expression data.
    Recchia A; Wit E; Vinciotti V; Kellam P
    IET Syst Biol; 2008 Nov; 2(6):385-96. PubMed ID: 19045834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide location analysis: insights on transcriptional regulation.
    Hawkins RD; Ren B
    Hum Mol Genet; 2006 Apr; 15 Spec No 1():R1-7. PubMed ID: 16651365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling transcription regulatory networks by protein-DNA and protein-protein interaction mapping.
    Walhout AJ
    Genome Res; 2006 Dec; 16(12):1445-54. PubMed ID: 17053092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical methods in integrative analysis for gene regulatory modules.
    Zeng L; Wu J; Xie J
    Stat Appl Genet Mol Biol; 2008; 7(1):Article 28. PubMed ID: 18976224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary influence of binding site organisation on gene regulatory networks.
    Cooper MB; Loose M; Brookfield JF
    Biosystems; 2009 May; 96(2):185-93. PubMed ID: 19428984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of differentially-regulated genes within a regulatory network by GPS genome navigation.
    Zwir I; Huang H; Groisman EA
    Bioinformatics; 2005 Nov; 21(22):4073-83. PubMed ID: 16159917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development.
    Vermeirssen V; Joshi A; Michoel T; Bonnet E; Casneuf T; Van de Peer Y
    Mol Biosyst; 2009 Dec; 5(12):1817-30. PubMed ID: 19763340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".
    Doidy J; Li Y; Neymotin B; Edwards MB; Varala K; Gresham D; Coruzzi GM
    BMC Genomics; 2016 Feb; 17():92. PubMed ID: 26843062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transcription-centric model of SNP-age interaction.
    Wang K; Basu M; Malin J; Hannenhalli S
    PLoS Genet; 2021 Mar; 17(3):e1009427. PubMed ID: 33770080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.