BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22614424)

  • 21. Real-time tumor tracking with an artificial neural networks-based method: a feasibility study.
    Seregni M; Pella A; Riboldi M; Orecchia R; Cerveri P; Baroni G
    Phys Med; 2013 Jan; 29(1):48-59. PubMed ID: 22209110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [A tracker for ophthalmology].
    Jean B; Kazmierczak H; Thiel HJ
    Klin Monbl Augenheilkd; 1987 Aug; 191(2):156-8. PubMed ID: 3669510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-house auto cutoff sensor device for radiotherapy machine to monitor patient movements.
    Senthilkumar S; Ramakrishnan V
    J Appl Clin Med Phys; 2008 Jun; 9(3):82-89. PubMed ID: 18716594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Video-based head movement compensation for novel haploscopic eye-tracking apparatus.
    Irsch K; Ramey NA; Kurz A; Guyton DL; Ying HS
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1152-7. PubMed ID: 18978348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new method for accurate and fast measurement of 3D eye movements.
    Kim SC; Nam KC; Lee WS; Kim DW
    Med Eng Phys; 2006 Jan; 28(1):82-9. PubMed ID: 15963751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Real time eye tracking with the CMOS 2 camera system].
    Markert S; Berkes S; Goetze A; Plagwitz KU; Husar P; Henning G
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():652-5. PubMed ID: 12465265
    [No Abstract]   [Full Text] [Related]  

  • 27. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy.
    Jin JY; Yin FF; Tenn SE; Medin PM; Solberg TD
    Med Dosim; 2008; 33(2):124-34. PubMed ID: 18456164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [A new technic for recording eye movements by image processing. Principle and method].
    Buquet C; Charlier J; Toucas S; Quere MA
    Bull Soc Ophtalmol Fr; 1990 Apr; 90(4):395-8, 400. PubMed ID: 2208495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fixation precision in high-speed noncontact eye-gaze tracking.
    Hennessey C; Noureddin B; Lawrence P
    IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):289-98. PubMed ID: 18348914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring eye movements during locomotion: filtering techniques for obtaining velocity signals from a video-based eye monitor.
    Das VE; Thomas CW; Zivotofsky AZ; Leigh RJ
    J Vestib Res; 1996; 6(6):455-61. PubMed ID: 8968972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of MV and kV imager correlation for maintaining continuous real-time 3D internal marker tracking during beam interruptions.
    Wiersma RD; Riaz N; Dieterich S; Suh Y; Xing L
    Phys Med Biol; 2009 Jan; 54(1):89-103. PubMed ID: 19060356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces.
    Abbott WW; Faisal AA
    J Neural Eng; 2012 Aug; 9(4):046016. PubMed ID: 22791699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining head pose and eye location information for gaze estimation.
    Valenti R; Sebe N; Gevers T
    IEEE Trans Image Process; 2012 Feb; 21(2):802-15. PubMed ID: 21788191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.
    Ali SM; Reisner LA; King B; Cao A; Auner G; Klein M; Pandya AK
    Stud Health Technol Inform; 2008; 132():4-7. PubMed ID: 18391246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple video-based system for examining irregularities in very slow, smooth-pursuit eye movements in cancer patients.
    Menozzi M; Rhyner K; Joestl A; Stähli H; Bergande E
    Biomed Tech (Berl); 2008 Feb; 53(1):1-7. PubMed ID: 18251705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time monitoring of eye movements using infrared video-oculography during functional magnetic resonance imaging of the frontal eye fields.
    Gitelman DR; Parrish TB; LaBar KS; Mesulam MM
    Neuroimage; 2000 Jan; 11(1):58-65. PubMed ID: 10686117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Influence of body position on ocular cycloposition in patients without binocular vision].
    Becker R; Krzizok T; Wassill H
    Klin Monbl Augenheilkd; 2006 Jan; 223(1):48-51. PubMed ID: 16418934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pilot study on geometrical uncertainties for intra ocular cancers in radiotherapy.
    Antony R; Herschtal A; Todd S; Phillips C; Haworth A
    Australas Phys Eng Sci Med; 2017 Jun; 40(2):433-439. PubMed ID: 28466444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking.
    Sawant A; Smith RL; Venkat RB; Santanam L; Cho B; Poulsen P; Cattell H; Newell LJ; Parikh P; Keall PJ
    Int J Radiat Oncol Biol Phys; 2009 Jun; 74(2):575-82. PubMed ID: 19327907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Principles underlying real-time nystagmus analysis of horizontal and vertical eye movements recorded with electro-, infra-red-, or video-oculographic techniques.
    Allum JH; Honegger F; Troescher M
    J Vestib Res; 1998; 8(6):449-63. PubMed ID: 9842515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.