BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2261467)

  • 21. A 175-psec molecular dynamics simulation of camphor-bound cytochrome P-450cam.
    Paulsen MD; Ornstein RL
    Proteins; 1991; 11(3):184-204. PubMed ID: 1749772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active site topology of Saccharomyces cerevisiae lanosterol 14 alpha-demethylase (CYP51) and its G310D mutant (cytochrome P-450SG1).
    Tuck SF; Aoyama Y; Yoshida Y; Ortiz de Montellano PR
    J Biol Chem; 1992 Jul; 267(19):13175-9. PubMed ID: 1618820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding sites of pyridine in cytochrome P-450cam.
    Ristau O; Jung C
    Biochim Biophys Acta; 1991 Jul; 1078(3):321-5. PubMed ID: 1859821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative Fourier transform infrared studies of the secondary structure and the CO heme ligand environment in cytochrome P-450cam and cytochrome P-420cam.
    Mouro C; Jung C; Bondon A; Simonneaux G
    Biochemistry; 1997 Jul; 36(26):8125-34. PubMed ID: 9201961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450.
    Poulos TL; Finzel BC; Gunsalus IC; Wagner GC; Kraut J
    J Biol Chem; 1985 Dec; 260(30):16122-30. PubMed ID: 4066706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compressibility of the heme pocket of substrate analogue complexes of cytochrome P-450cam-CO. The effect of hydrostatic pressure on the Soret band.
    Jung C; Hui Bon Hoa G; Davydov D; Gill E; Heremans K
    Eur J Biochem; 1995 Oct; 233(2):600-6. PubMed ID: 7588807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Primary and secondary structural patterns in eukaryotic cytochrome P-450 families correspond to structures of the helix-rich domain of Pseudomonas putida cytochrome P-450cam. Indications for a similar overall topology.
    Ouzounis CA; Melvin WT
    Eur J Biochem; 1991 Jun; 198(2):307-15. PubMed ID: 2040297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam.
    Paulsen MD; Bass MB; Ornstein RL
    J Biomol Struct Dyn; 1991 Oct; 9(2):187-203. PubMed ID: 1741957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational dynamics of cytochrome P-450cam as monitored by photoacoustic calorimetry.
    Di Primo C; Hui Bon Hoa G; Deprez E; Douzou P; Sligar SG
    Biochemistry; 1993 Apr; 32(14):3671-6. PubMed ID: 8466907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of cytochrome P-450cam complexed with the (1S)-camphor enantiomer.
    Schlichting I; Jung C; Schulze H
    FEBS Lett; 1997 Oct; 415(3):253-7. PubMed ID: 9357977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Step-scan time-resolved FTIR spectroscopy of cytochrome P-450cam carbon monoxide complex: a salt link involved in the ligand-rebinding process.
    Contzen J; Jung C
    Biochemistry; 1998 Mar; 37(13):4317-24. PubMed ID: 9556346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonance Raman investigations of Escherichia coli-expressed Pseudomonas putida cytochrome P450 and P420.
    Wells AV; Li P; Champion PM; Martinis SA; Sligar SG
    Biochemistry; 1992 May; 31(18):4384-93. PubMed ID: 1581294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EPR studies on the photoproducts of ferric cytochrome P450cam (CYP101) nitrosyl complexes: effects of camphor and its analogues on ligand-bound structures.
    Masuya F; Tsubaki M; Makino R; Hori H
    J Biochem; 1994 Nov; 116(5):1146-52. PubMed ID: 7896745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamics of water mediating protein-ligand interactions in cytochrome P450cam: a molecular dynamics study.
    Helms V; Wade RC
    Biophys J; 1995 Sep; 69(3):810-24. PubMed ID: 8519982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and electronic characterization of heme moiety in oxygenated hemoproteins by using XANES spectroscopy.
    Shiro Y; Makino R; Sato F; Oyanagi H; Matsushita T; Ishimura Y; Iizuka T
    Biochim Biophys Acta; 1991 Dec; 1115(2):101-7. PubMed ID: 1764462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel.
    Haines DC; Chen B; Tomchick DR; Bondlela M; Hegde A; Machius M; Peterson JA
    Biochemistry; 2008 Mar; 47(12):3662-70. PubMed ID: 18298086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active-site topologies of human CYP2D6 and its aspartate-301 --> glutamate, asparagine, and glycine mutants.
    Mackman R; Tschirret-Guth RA; Smith G; Hayhurst GP; Ellis SW; Lennard MS; Tucker GT; Wolf CR; Ortiz de Montellano PR
    Arch Biochem Biophys; 1996 Jul; 331(1):134-40. PubMed ID: 8660692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The carbon monoxide stretching modes in camphor-bound cytochrome P-450cam. The effect of solvent conditions, temperature, and pressure.
    Schulze H; Ristau O; Jung C
    Eur J Biochem; 1994 Sep; 224(3):1047-55. PubMed ID: 7925402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering cytochrome P-450cam to increase the stereospecificity and coupling of aliphatic hydroxylation.
    Loida PJ; Sligar SG
    Protein Eng; 1993 Feb; 6(2):207-12. PubMed ID: 8475046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.