BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2261467)

  • 41. NMR studies of substrate binding to cytochrome P450 BM3: comparisons to cytochrome P450 cam.
    Modi S; Primrose WU; Boyle JM; Gibson CF; Lian LY; Roberts GC
    Biochemistry; 1995 Jul; 34(28):8982-8. PubMed ID: 7619797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of monovalent cations on cytochrome P-450 camphor. Evidence for preferential binding of potassium.
    Deprez E; Di Primo C; Hoa GH; Douzou P
    FEBS Lett; 1994 Jun; 347(2-3):207-10. PubMed ID: 8034004
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Electron-conformational interactions at the active site of reduced bacterial cytochrome P450cam induced by a substrate and analysis of the electron structure of heme].
    Sharonov IuA
    Mol Biol (Mosk); 1992; 26(6):1251-62. PubMed ID: 1491671
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution.
    Hasemann CA; Ravichandran KG; Peterson JA; Deisenhofer J
    J Mol Biol; 1994 Mar; 236(4):1169-85. PubMed ID: 8120894
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antagonistic effects of hydrostatic pressure and osmotic pressure on cytochrome P-450cam spin transition.
    Di Primo C; Deprez E; Hoa GH; Douzou P
    Biophys J; 1995 May; 68(5):2056-61. PubMed ID: 7612848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inactivation of catalase by phenylhydrazine. Formation of a stable aryl-iron heme complex.
    Ortiz de Montellano PR; Kerr DE
    J Biol Chem; 1983 Sep; 258(17):10558-63. PubMed ID: 6885792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substrate mobility in thiocamphor-bound cytochrome P450cam: an explanation of the conflict between the observed product profile and the X-ray structure.
    Paulsen MD; Ornstein RL
    Protein Eng; 1993 Jun; 6(4):359-65. PubMed ID: 8332592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cytochrome P-450cam and putidaredoxin interaction during electron transfer.
    Peterson JA; Mock DM
    Acta Biol Med Ger; 1979; 38(2-3):153-62. PubMed ID: 229672
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam.
    Collins JR; Loew GH
    J Biol Chem; 1988 Mar; 263(7):3164-70. PubMed ID: 3343243
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The cytochrome P450 1A2 active site: topology and perturbations caused by glutamic acid-318 and threonine-319 mutations.
    Tuck SF; Hiroya K; Shimizu T; Hatano M; Ortiz de Montellano PR
    Biochemistry; 1993 Mar; 32(10):2548-53. PubMed ID: 8095402
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mutagenesis of a single hydrogen bond in cytochrome P-450 alters cation binding and heme solvation.
    Di Primo C; Hui Bon Hoa G; Douzou P; Sligar S
    J Biol Chem; 1990 Apr; 265(10):5361-3. PubMed ID: 2318818
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tyrosine-96 as a natural spectroscopic probe of the cytochrome P-450cam active site.
    Atkins WM; Sligar SG
    Biochemistry; 1990 Feb; 29(5):1271-5. PubMed ID: 2182119
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Topological analysis of the active sites of cytochromes P450IIB4 (rabbit), P450IIB10 (mouse), and P450IIB11 (dog) by in situ rearrangement of phenyl-iron complexes.
    Swanson BA; Halpert JR; Bornheim LM; Ortiz de Montellano PR
    Arch Biochem Biophys; 1992 Jan; 292(1):42-6. PubMed ID: 1727649
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Observation of the O-O stretching Raman band for cytochrome P-450cam under catalytic conditions.
    Egawa T; Ogura T; Makino R; Ishimura Y; Kitagawa T
    J Biol Chem; 1991 Jun; 266(16):10246-8. PubMed ID: 2037577
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A detailed molecular model for human aromatase.
    Laughton CA; Zvelebil MJ; Neidle S
    J Steroid Biochem Mol Biol; 1993 Mar; 44(4-6):399-407. PubMed ID: 8476753
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A role for Asp-251 in cytochrome P-450cam oxygen activation.
    Gerber NC; Sligar SG
    J Biol Chem; 1994 Feb; 269(6):4260-6. PubMed ID: 8307990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of the complexes formed by cytochrome P450cam with cytochrome b5 and putidaredoxin, two effectors of camphor hydroxylase activity.
    Rui L; Pochapsky SS; Pochapsky TC
    Biochemistry; 2006 Mar; 45(12):3887-97. PubMed ID: 16548516
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The active site of cytochrome P-450 nifedipine oxidase: a model-building study.
    Ferenczy GG; Morris GM
    J Mol Graph; 1989 Dec; 7(4):206-11. PubMed ID: 2486822
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of the tyrosine 96 hydrogen bond on the inactivation of cytochrome P-450cam induced by hydrostatic pressure.
    Di Primo C; Hui Bon Hoa G; Douzou P; Sligar S
    Eur J Biochem; 1990 Oct; 193(2):383-6. PubMed ID: 2226459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.