These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. On the use of brain-computer interfaces outside scientific laboratories toward an application in domotic environments. Babiloni F; Cincotti F; Marciani M; Salinari S; Astolfi L; Aloise F; De Vico Fallani F; Mattia D Int Rev Neurobiol; 2009; 86():133-46. PubMed ID: 19607996 [TBL] [Abstract][Full Text] [Related]
7. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation. Rebesco JM; Miller LE Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520 [TBL] [Abstract][Full Text] [Related]
8. Brain-controlled interfaces: movement restoration with neural prosthetics. Schwartz AB; Cui XT; Weber DJ; Moran DW Neuron; 2006 Oct; 52(1):205-20. PubMed ID: 17015237 [TBL] [Abstract][Full Text] [Related]
9. Brain-computer interface research comes of age: traditional assumptions meet emerging realities. Wolpaw JR J Mot Behav; 2010 Nov; 42(6):351-3. PubMed ID: 21184352 [TBL] [Abstract][Full Text] [Related]
10. Bridging the brain to the world: a perspective on neural interface systems. Donoghue JP Neuron; 2008 Nov; 60(3):511-21. PubMed ID: 18995827 [TBL] [Abstract][Full Text] [Related]
11. [Development of practicality of EEG-based brain-computer interface]. Lin H; He Q; Yan Q; Feng Z; Wu B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):702-6. PubMed ID: 20649048 [TBL] [Abstract][Full Text] [Related]
12. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. Zander TO; Kothe C J Neural Eng; 2011 Apr; 8(2):025005. PubMed ID: 21436512 [TBL] [Abstract][Full Text] [Related]
13. The emerging world of motor neuroprosthetics: a neurosurgical perspective. Leuthardt EC; Schalk G; Moran D; Ojemann JG Neurosurgery; 2006 Jul; 59(1):1-14; discussion 1-14. PubMed ID: 16823294 [TBL] [Abstract][Full Text] [Related]
14. A review on directional information in neural signals for brain-machine interfaces. Waldert S; Pistohl T; Braun C; Ball T; Aertsen A; Mehring C J Physiol Paris; 2009; 103(3-5):244-54. PubMed ID: 19665554 [TBL] [Abstract][Full Text] [Related]
15. Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Lulé D; Diekmann V; Kassubek J; Kurt A; Birbaumer N; Ludolph AC; Kraft E Neurorehabil Neural Repair; 2007; 21(6):518-26. PubMed ID: 17476000 [TBL] [Abstract][Full Text] [Related]
16. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513 [TBL] [Abstract][Full Text] [Related]
17. Development and quantitative performance evaluation of a noninvasive EMG computer interface. Choi C; Micera S; Carpaneto J; Kim J IEEE Trans Biomed Eng; 2009 Jan; 56(1):188-91. PubMed ID: 19224732 [TBL] [Abstract][Full Text] [Related]
18. Neural control of motor prostheses. Scherberger H Curr Opin Neurobiol; 2009 Dec; 19(6):629-33. PubMed ID: 19896364 [TBL] [Abstract][Full Text] [Related]
19. A commentary on brain-computer interfacing and its impact on rehabilitation science and clinical applicability. Robinson CJ IEEE Trans Rehabil Eng; 2000 Jun; 8(2):161-3. PubMed ID: 10896177 [No Abstract] [Full Text] [Related]
20. DASHER--an efficient writing system for brain-computer interfaces? Wills SA; MacKay DJ IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):244-6. PubMed ID: 16792304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]