These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22614891)

  • 21. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuroimaging-based approaches in the brain-computer interface.
    Min BK; Marzelli MJ; Yoo SS
    Trends Biotechnol; 2010 Nov; 28(11):552-60. PubMed ID: 20810180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexibility and practicality graz brain-computer interface approach.
    Scherer R; Müller-Putz GR; Pfurtscheller G
    Int Rev Neurobiol; 2009; 86():119-31. PubMed ID: 19607995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Complete Brain-machine Interfaces and Plastic Changes in the Brain].
    Sakurai Y
    Brain Nerve; 2010 Oct; 62(10):1059-65. PubMed ID: 20940505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preprocessing and meta-classification for brain-computer interfaces.
    Hammon PS; de Sa VR
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):518-25. PubMed ID: 17355065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BCI Meeting 2005--workshop on signals and recording methods.
    Wolpaw JR; Loeb GE; Allison BZ; Donchin E; do Nascimento OF; Heetderks WJ; Nijboer F; Shain WG; Turner JN
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):138-41. PubMed ID: 16792279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural mechanisms of brain-computer interface control.
    Halder S; Agorastos D; Veit R; Hammer EM; Lee S; Varkuti B; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A
    Neuroimage; 2011 Apr; 55(4):1779-90. PubMed ID: 21256234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using human extra-cortical local field potentials to control a switch.
    Kennedy P; Andreasen D; Ehirim P; King B; Kirby T; Mao H; Moore M
    J Neural Eng; 2004 Jun; 1(2):72-7. PubMed ID: 15876625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Describing different brain computer interface systems through a unique model: a UML implementation.
    Quitadamo LR; Marciani MG; Cardarilli GC; Bianchi L
    Neuroinformatics; 2008; 6(2):81-96. PubMed ID: 18607780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuronal mechanisms underlying control of a brain-computer interface.
    Hinterberger T; Veit R; Wilhelm B; Weiskopf N; Vatine JJ; Birbaumer N
    Eur J Neurosci; 2005 Jun; 21(11):3169-81. PubMed ID: 15978025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation.
    Müller-Putz GR; Scherer R; Pfurtscheller G; Rupp R
    Biomed Tech (Berl); 2006 Jul; 51(2):57-63. PubMed ID: 16915766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BCI meeting 2005--workshop on technology: hardware and software.
    Cincotti F; Bianchi L; Birch G; Guger C; Mellinger J; Scherer R; Schmidt RN; Yáñez Suárez O; Schalk G
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):128-31. PubMed ID: 16792276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system.
    Karniel A; Kositsky M; Fleming KM; Chiappalone M; Sanguineti V; Alford ST; Mussa-Ivaldi FA
    J Neural Eng; 2005 Sep; 2(3):S250-65. PubMed ID: 16135888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain-computer interfaces in the continuum of consciousness.
    Kübler A; Kotchoubey B
    Curr Opin Neurol; 2007 Dec; 20(6):643-9. PubMed ID: 17992083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain computer interface (BCI) tools developed in a clinical environment.
    Anderson NR; DeVries EM
    Am J Electroneurodiagnostic Technol; 2010 Sep; 50(3):187-98. PubMed ID: 20957974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BCI Meeting 2005--workshop on BCI signal processing: feature extraction and translation.
    McFarland DJ; Anderson CW; Müller KR; Schlögl A; Krusienski DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):135-8. PubMed ID: 16792278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performances evaluation and optimization of brain computer interface systems in a copy spelling task.
    Bianchi L; Quitadamo LR; Garreffa G; Cardarilli GC; Marciani MG
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):207-16. PubMed ID: 17601190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BCI in practice.
    McFarland DJ; Vaughan TM
    Prog Brain Res; 2016; 228():389-404. PubMed ID: 27590976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brain-computer interfaces based on visual evoked potentials.
    Wang Y; Gao X; Hong B; Jia C; Gao S
    IEEE Eng Med Biol Mag; 2008; 27(5):64-71. PubMed ID: 18799392
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.