BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22615062)

  • 1. Importance of OH(-) transport from cathodes in microbial fuel cells.
    Popat SC; Ki D; Rittmann BE; Torres CI
    ChemSusChem; 2012 Jun; 5(6):1071-9. PubMed ID: 22615062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells.
    Cheng S; Liu H; Logan BE
    Environ Sci Technol; 2006 Jan; 40(1):364-9. PubMed ID: 16433373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.
    Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT
    Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells.
    Wang X; Feng Y; Liu J; Shi X; Lee H; Li N; Ren N
    Biosens Bioelectron; 2010 Oct; 26(2):946-8. PubMed ID: 20634052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells.
    Zhang L; Liu C; Zhuang L; Li W; Zhou S; Zhang J
    Biosens Bioelectron; 2009 May; 24(9):2825-9. PubMed ID: 19297145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells.
    Lefebvre O; Ooi WK; Tang Z; Abdullah-Al-Mamun M; Chua DH; Ng HY
    Bioresour Technol; 2009 Oct; 100(20):4907-10. PubMed ID: 19464880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of microbial fuel cells with and without Nafion solution as cathode binding agent.
    Huang Y; He Z; Mansfeld F
    Bioelectrochemistry; 2010 Oct; 79(2):261-4. PubMed ID: 20478750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ investigation of cathode and local biofilm microenvironments reveals important roles of OH- and oxygen transport in microbial fuel cells.
    Yuan Y; Zhou S; Tang J
    Environ Sci Technol; 2013 May; 47(9):4911-7. PubMed ID: 23537198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.
    Duteanu N; Erable B; Senthil Kumar SM; Ghangrekar MM; Scott K
    Bioresour Technol; 2010 Jul; 101(14):5250-5. PubMed ID: 20171090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors.
    Zhang F; Saito T; Cheng S; Hickner MA; Logan BE
    Environ Sci Technol; 2010 Feb; 44(4):1490-5. PubMed ID: 20099808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells.
    Yuan Y; Zhao B; Jeon Y; Zhong S; Zhou S; Kim S
    Bioresour Technol; 2011 May; 102(10):5849-54. PubMed ID: 21435866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity.
    An J; Jeon H; Lee J; Chang IS
    Environ Sci Technol; 2011 Jun; 45(12):5441-6. PubMed ID: 21585217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and constraints of using oxygen cathodes in microbial fuel cells.
    Zhao F; Harnisch F; Schröder U; Scholz F; Bogdanoff P; Herrmann I
    Environ Sci Technol; 2006 Sep; 40(17):5193-9. PubMed ID: 16999088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells.
    Deng L; Zhou M; Liu C; Liu L; Liu C; Dong S
    Talanta; 2010 Apr; 81(1-2):444-8. PubMed ID: 20188944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical performance of low cost cathodes prepared by plasma sputtering deposition in microbial fuel cells.
    Lefebvre O; Tang Z; Fung MP; Chua DH; Chang IS; Ng HY
    Biosens Bioelectron; 2012 Jan; 31(1):164-9. PubMed ID: 22061267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems.
    Harnisch F; Schröder U
    Chem Soc Rev; 2010 Nov; 39(11):4433-48. PubMed ID: 20830322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.
    Xia X; Zhang F; Zhang X; Liang P; Huang X; Logan BE
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7862-6. PubMed ID: 23902951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity and stability of pyrolyzed iron ethylenediaminetetraacetic acid as cathode catalyst in microbial fuel cells.
    Wang L; Liang P; Zhang J; Huang X
    Bioresour Technol; 2011 Apr; 102(8):5093-7. PubMed ID: 21324675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of conductive polymers in biocathode of microbial fuel cells and microbial community.
    Li C; Ding L; Cui H; Zhang L; Xu K; Ren H
    Bioresour Technol; 2012 Jul; 116():459-65. PubMed ID: 22534369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.