These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22615062)

  • 21. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.
    Mahmoud M; Gad-Allah TA; El-Khatib KM; El-Gohary F
    Bioresour Technol; 2011 Nov; 102(22):10459-64. PubMed ID: 21944282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Power generation by packed-bed air-cathode microbial fuel cells.
    Zhang X; Shi J; Liang P; Wei J; Huang X; Zhang C; Logan BE
    Bioresour Technol; 2013 Aug; 142():109-14. PubMed ID: 23732924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.
    Zhuang L; Zhou S; Li Y; Yuan Y
    Bioresour Technol; 2010 May; 101(10):3514-9. PubMed ID: 20093009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Air-cathode structure optimization in separator-coupled microbial fuel cells.
    Zhang X; Sun H; Liang P; Huang X; Chen X; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):267-71. PubMed ID: 21996324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells.
    Freguia S; Rabaey K; Yuan Z; Keller J
    Water Res; 2008 Mar; 42(6-7):1387-96. PubMed ID: 17996270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Need for optimizing catalyst loading for achieving affordable microbial fuel cells.
    Singh I; Chandra A
    Bioresour Technol; 2013 Aug; 142():77-81. PubMed ID: 23735791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells.
    Kim JR; Kim JY; Han SB; Park KW; Saratale GD; Oh SE
    Bioresour Technol; 2011 Jan; 102(1):342-7. PubMed ID: 20656480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells.
    Zhang F; Pant D; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):49-55. PubMed ID: 21937216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell.
    He Z; Huang Y; Manohar AK; Mansfeld F
    Bioelectrochemistry; 2008 Nov; 74(1):78-82. PubMed ID: 18774345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An insight into cathode options for microbial fuel cells.
    Lefebvre O; Al-Mamun A; Ooi WK; Tang Z; Chua DH; Ng HY
    Water Sci Technol; 2008; 57(12):2031-7. PubMed ID: 18587194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells.
    Rabaey K; Read ST; Clauwaert P; Freguia S; Bond PL; Blackall LL; Keller J
    ISME J; 2008 May; 2(5):519-27. PubMed ID: 18288216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells.
    Ahn Y; Logan BE
    Bioresour Technol; 2013 Mar; 132():436-9. PubMed ID: 23433978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon nanotube supported MnO₂ catalysts for oxygen reduction reaction and their applications in microbial fuel cells.
    Lu M; Kharkwal S; Ng HY; Li SF
    Biosens Bioelectron; 2011 Aug; 26(12):4728-32. PubMed ID: 21676607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application.
    Santoro C; Artyushkova K; Babanova S; Atanassov P; Ieropoulos I; Grattieri M; Cristiani P; Trasatti S; Li B; Schuler AJ
    Bioresour Technol; 2014 Jul; 163():54-63. PubMed ID: 24787317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.
    Dai Y; Chan Y; Jiang B; Wang L; Zou J; Pan K; Fu H
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):6992-7002. PubMed ID: 26938657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deposition of Fe on graphite felt by thermal decomposition of Fe(CO)5 for effective cathodic preparation of microbial fuel cells.
    Wang P; Lai B; Li H; Du Z
    Bioresour Technol; 2013 Apr; 134():30-5. PubMed ID: 23500556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.
    Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D
    Enzyme Microb Technol; 2012 Mar; 50(3):181-7. PubMed ID: 22305173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of sulfide on microbial fuel cells with platinum and nitrogen-doped carbon powder cathodes.
    Feng Y; Shi X; Wang X; Lee H; Liu J; Qu Y; He W; Kumar SMS; Kim BH; Ren N
    Biosens Bioelectron; 2012 May; 35(1):413-415. PubMed ID: 22424752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review.
    Erable B; Féron D; Bergel A
    ChemSusChem; 2012 Jun; 5(6):975-87. PubMed ID: 22615123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode.
    Yan H; Saito T; Regan JM
    Water Res; 2012 May; 46(7):2215-24. PubMed ID: 22386083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.