BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 22615215)

  • 21. Bottom-Up On-Surface Synthesis of Two-Dimensional Graphene Nanoribbon Networks and Their Thermoelectric Properties.
    Kojima T; Nakae T; Xu Z; Saravanan C; Watanabe K; Nakamura Y; Sakaguchi H
    Chem Asian J; 2019 Dec; 14(23):4400-4407. PubMed ID: 31724299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes.
    Li H; Zhang J; Gholizadeh AB; Brownless J; Fu Y; Cai W; Han Y; Duan T; Wang Y; Ling H; Leifer K; Curry R; Song A
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52892-52900. PubMed ID: 34719923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons.
    Niu W; Ma J; Feng X
    Acc Chem Res; 2022 Dec; 55(23):3322-3333. PubMed ID: 36378659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
    Kosynkin DV; Higginbotham AL; Sinitskii A; Lomeda JR; Dimiev A; Price BK; Tour JM
    Nature; 2009 Apr; 458(7240):872-6. PubMed ID: 19370030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes.
    Lee HJ; Lim J; Cho SY; Kim H; Lee C; Lee GY; Sasikala SP; Yun T; Choi DS; Jeong MS; Jung HT; Hong S; Kim SO
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38006-38015. PubMed ID: 31544452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective etching of graphene edges by hydrogen plasma.
    Xie L; Jiao L; Dai H
    J Am Chem Soc; 2010 Oct; 132(42):14751-3. PubMed ID: 20923144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons.
    Narita A; Feng X; Hernandez Y; Jensen SA; Bonn M; Yang H; Verzhbitskiy IA; Casiraghi C; Hansen MR; Koch AH; Fytas G; Ivasenko O; Li B; Mali KS; Balandina T; Mahesh S; De Feyter S; Müllen K
    Nat Chem; 2014 Feb; 6(2):126-32. PubMed ID: 24451588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes.
    Kim K; Sussman A; Zettl A
    ACS Nano; 2010 Mar; 4(3):1362-6. PubMed ID: 20131856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask.
    Kang CG; Kang JW; Lee SK; Lee SY; Cho CH; Hwang HJ; Lee YG; Heo J; Chung HJ; Yang H; Seo S; Park SJ; Ko KY; Ahn J; Lee BH
    Nanotechnology; 2011 Jul; 22(29):295201. PubMed ID: 21673381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Raman spectroscopy of lithographically patterned graphene nanoribbons.
    Ryu S; Maultzsch J; Han MY; Kim P; Brus LE
    ACS Nano; 2011 May; 5(5):4123-30. PubMed ID: 21452879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron-Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons.
    Zhou G; Cen C; Wang S; Deng M; Prezhdo OV
    J Phys Chem Lett; 2019 Nov; 10(22):7179-7187. PubMed ID: 31644293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors.
    Zhang C; Peng Z; Lin J; Zhu Y; Ruan G; Hwang CC; Lu W; Hauge RH; Tour JM
    ACS Nano; 2013 Jun; 7(6):5151-9. PubMed ID: 23672653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic property modification of single-walled carbon nanotubes by encapsulation of sulfur-terminated graphene nanoribbons.
    Pollack A; Alnemrat S; Chamberlain TW; Khlobystov AN; Hooper JP; Osswald S
    Small; 2014 Dec; 10(24):5077-86. PubMed ID: 25123503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing.
    Johnson AP; Sabu C; Swamy NK; Anto A; Gangadharappa HV; Pramod K
    Biosens Bioelectron; 2021 Jul; 184():113245. PubMed ID: 33895691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revisiting the Mechanism of Oxidative Unzipping of Multiwall Carbon Nanotubes to Graphene Nanoribbons.
    Dimiev AM; Khannanov A; Vakhitov I; Kiiamov A; Shukhina K; Tour JM
    ACS Nano; 2018 Apr; 12(4):3985-3993. PubMed ID: 29578700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic structure changes during the surface-assisted formation of a graphene nanoribbon.
    Bronner C; Utecht M; Haase A; Saalfrank P; Klamroth T; Tegeder P
    J Chem Phys; 2014 Jan; 140(2):024701. PubMed ID: 24437896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wrinkle engineering: a new approach to massive graphene nanoribbon arrays.
    Pan Z; Liu N; Fu L; Liu Z
    J Am Chem Soc; 2011 Nov; 133(44):17578-81. PubMed ID: 21981554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors.
    Lin MW; Ling C; Zhang Y; Yoon HJ; Cheng MM; Agapito LA; Kioussis N; Widjaja N; Zhou Z
    Nanotechnology; 2011 Jul; 22(26):265201. PubMed ID: 21576804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.