These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
387 related articles for article (PubMed ID: 22615281)
21. The activity of echinocandins, amphotericin B and voriconazole against fluconazole-susceptible and fluconazole-resistant Brazilian Candida glabrata isolates. Mario DA; Denardi LB; Bandeira LA; Antunes MS; Santurio JM; Severo LC; Alves SH Mem Inst Oswaldo Cruz; 2012 May; 107(3):433-6. PubMed ID: 22510843 [TBL] [Abstract][Full Text] [Related]
22. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Geber A; Hitchcock CA; Swartz JE; Pullen FS; Marsden KE; Kwon-Chung KJ; Bennett JE Antimicrob Agents Chemother; 1995 Dec; 39(12):2708-17. PubMed ID: 8593007 [TBL] [Abstract][Full Text] [Related]
23. The heme-binding protein Dap1 links iron homeostasis to azole resistance via the P450 protein Erg11 in Candida glabrata. Hosogaya N; Miyazaki T; Nagi M; Tanabe K; Minematsu A; Nagayoshi Y; Yamauchi S; Nakamura S; Imamura Y; Izumikawa K; Kakeya H; Yanagihara K; Miyazaki Y; Kugiyama K; Kohno S FEMS Yeast Res; 2013 Jun; 13(4):411-21. PubMed ID: 23496820 [TBL] [Abstract][Full Text] [Related]
25. Reduced Susceptibility to Azoles in Cryptococcus gattii Correlates with the Substitution R258L in a Substrate Recognition Site of the Lanosterol 14-α-Demethylase. Carvajal SK; Melendres J; Escandón P; Firacative C Microbiol Spectr; 2023 Aug; 11(4):e0140323. PubMed ID: 37341584 [TBL] [Abstract][Full Text] [Related]
26. Amino acid substitutions in Erg11p of azole-resistant Candida glabrata: Possible effective substitutions and homology modelling. Nabili M; Abdollahi Gohar A; Badali H; Mohammadi R; Moazeni M J Glob Antimicrob Resist; 2016 Jun; 5():42-6. PubMed ID: 27436465 [TBL] [Abstract][Full Text] [Related]
27. Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. Zavrel M; Hoot SJ; White TC Eukaryot Cell; 2013 May; 12(5):725-38. PubMed ID: 23475705 [TBL] [Abstract][Full Text] [Related]
28. The amino acid substitution N136Y in Candida albicans sterol 14alpha-demethylase is involved in fluconazole resistance. Alvarez-Rueda N; Fleury A; Logé C; Pagniez F; Robert E; Morio F; Le Pape P Med Mycol; 2016 Oct; 54(7):764-775. PubMed ID: 27143634 [TBL] [Abstract][Full Text] [Related]
29. Multi-azole-resistant strains of Cryptococcus neoformans var. grubii isolated from a FLZ-resistant strain by culturing in medium containing voriconazole. Kano R; Okubo M; Hasegawa A; Kamata H Med Mycol; 2017 Nov; 55(8):877-882. PubMed ID: 28927230 [TBL] [Abstract][Full Text] [Related]
30. Molecular Characterization and Sterol Profiles Identify Nonsynonymous Mutations in Asadzadeh M; Alfouzan W; Parker JE; Meis JF; Kelly SL; Joseph L; Ahmad S Microbiol Spectr; 2023 Aug; 11(4):e0147423. PubMed ID: 37358415 [TBL] [Abstract][Full Text] [Related]
31. Monitoring Antifungal Resistance in a Global Collection of Invasive Yeasts and Molds: Application of CLSI Epidemiological Cutoff Values and Whole-Genome Sequencing Analysis for Detection of Azole Resistance in Candida albicans. Castanheira M; Deshpande LM; Davis AP; Rhomberg PR; Pfaller MA Antimicrob Agents Chemother; 2017 Oct; 61(10):. PubMed ID: 28784671 [TBL] [Abstract][Full Text] [Related]
32. In vitro activities of voriconazole, fluconazole, itraconazole and amphotericin B against non Candida albicans yeast isolates. Swinne D; Watelle M; Nolard N Rev Iberoam Micol; 2005 Mar; 22(1):24-8. PubMed ID: 15813679 [TBL] [Abstract][Full Text] [Related]
34. Crystal Structures of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provide Tools for Antifungal Discovery. Keniya MV; Sabherwal M; Wilson RK; Woods MA; Sagatova AA; Tyndall JDA; Monk BC Antimicrob Agents Chemother; 2018 Nov; 62(11):. PubMed ID: 30126961 [TBL] [Abstract][Full Text] [Related]
35. The Set1 Histone H3K4 Methyltransferase Contributes to Azole Susceptibility in a Species-Specific Manner by Differentially Altering the Expression of Drug Efflux Pumps and the Ergosterol Gene Pathway. Baker KM; Hoda S; Saha D; Gregor JB; Georgescu L; Serratore ND; Zhang Y; Cheng L; Lanman NA; Briggs SD Antimicrob Agents Chemother; 2022 May; 66(5):e0225021. PubMed ID: 35471041 [TBL] [Abstract][Full Text] [Related]
36. STB5 is a negative regulator of azole resistance in Candida glabrata. Noble JA; Tsai HF; Suffis SD; Su Q; Myers TG; Bennett JE Antimicrob Agents Chemother; 2013 Feb; 57(2):959-67. PubMed ID: 23229483 [TBL] [Abstract][Full Text] [Related]
37. Expression of ERG11 and efflux pump genes CDR1, CDR2 and SNQ2 in voriconazole susceptible and resistant Candida glabrata strains. Navarro-Rodríguez P; Martin-Vicente A; López-Fernández L; Guarro J; Capilla J Med Mycol; 2020 Jan; 58(1):30-38. PubMed ID: 30843047 [TBL] [Abstract][Full Text] [Related]
38. The Candida glabrata putative sterol transporter gene CgAUS1 protects cells against azoles in the presence of serum. Nakayama H; Tanabe K; Bard M; Hodgson W; Wu S; Takemori D; Aoyama T; Kumaraswami NS; Metzler L; Takano Y; Chibana H; Niimi M J Antimicrob Chemother; 2007 Dec; 60(6):1264-72. PubMed ID: 17913716 [TBL] [Abstract][Full Text] [Related]
39. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Morio F; Loge C; Besse B; Hennequin C; Le Pape P Diagn Microbiol Infect Dis; 2010 Apr; 66(4):373-84. PubMed ID: 20226328 [TBL] [Abstract][Full Text] [Related]
40. A newly identified amino acid substitution T123I in the 14α-demethylase (Erg11p) of Candida albicans confers azole resistance. Wu Y; Gao N; Li C; Gao J; Ying C FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28334124 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]