These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 22615792)
1. Development and validation of an automated high-throughput system for zebrafish in vivo screenings. Letamendia A; Quevedo C; Ibarbia I; Virto JM; Holgado O; Diez M; Izpisua Belmonte JC; Callol-Massot C PLoS One; 2012; 7(5):e36690. PubMed ID: 22615792 [TBL] [Abstract][Full Text] [Related]
2. Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Tran TC; Sneed B; Haider J; Blavo D; White A; Aiyejorun T; Baranowski TC; Rubinstein AL; Doan TN; Dingledine R; Sandberg EM Cancer Res; 2007 Dec; 67(23):11386-92. PubMed ID: 18056466 [TBL] [Abstract][Full Text] [Related]
3. Automated image-based phenotypic analysis in zebrafish embryos. Vogt A; Cholewinski A; Shen X; Nelson SG; Lazo JS; Tsang M; Hukriede NA Dev Dyn; 2009 Mar; 238(3):656-63. PubMed ID: 19235725 [TBL] [Abstract][Full Text] [Related]
4. Protocol development for discovery of angiogenesis inhibitors via automated methods using zebrafish. Mauro A; Ng R; Li JY; Guan R; Wang Y; Singh KK; Wen XY PLoS One; 2019; 14(11):e0221796. PubMed ID: 31730619 [TBL] [Abstract][Full Text] [Related]
5. High-throughput screening of zebrafish embryos using automated heart detection and imaging. Spomer W; Pfriem A; Alshut R; Just S; Pylatiuk C J Lab Autom; 2012 Dec; 17(6):435-42. PubMed ID: 23053930 [TBL] [Abstract][Full Text] [Related]
6. A versatile, automated and high-throughput drug screening platform for zebrafish embryos. Lubin A; Otterstrom J; Hoade Y; Bjedov I; Stead E; Whelan M; Gestri G; Paran Y; Payne E Biol Open; 2021 Sep; 10(9):. PubMed ID: 34472582 [TBL] [Abstract][Full Text] [Related]
7. Automated phenotype pattern recognition of zebrafish for high-throughput screening. Schutera M; Dickmeis T; Mione M; Peravali R; Marcato D; Reischl M; Mikut R; Pylatiuk C Bioengineered; 2016 Jul; 7(4):261-5. PubMed ID: 27285638 [TBL] [Abstract][Full Text] [Related]
8. Chemical genetic screening in the zebrafish embryo. Kaufman CK; White RM; Zon L Nat Protoc; 2009; 4(10):1422-32. PubMed ID: 19745824 [TBL] [Abstract][Full Text] [Related]
10. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates. White DT; Eroglu AU; Wang G; Zhang L; Sengupta S; Ding D; Rajpurohit SK; Walker SL; Ji H; Qian J; Mumm JS Nat Protoc; 2016 Dec; 11(12):2432-2453. PubMed ID: 27831568 [TBL] [Abstract][Full Text] [Related]
11. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos. Akagi J; Khoshmanesh K; Evans B; Hall CJ; Crosier KE; Cooper JM; Crosier PS; Wlodkowic D PLoS One; 2012; 7(5):e36630. PubMed ID: 22606275 [TBL] [Abstract][Full Text] [Related]
12. Facilitating drug discovery: an automated high-content inflammation assay in zebrafish. Wittmann C; Reischl M; Shah AH; Mikut R; Liebel U; Grabher C J Vis Exp; 2012 Jul; (65):e4203. PubMed ID: 22825322 [TBL] [Abstract][Full Text] [Related]
13. An automated and high-throughput Photomotor Response platform for chemical screens. Marcato D; Alshut R; Breitwieser H; Mikut R; Strahle U; Pylatiuk C; Peravali R Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7728-31. PubMed ID: 26738083 [TBL] [Abstract][Full Text] [Related]
14. Small molecule screening in the zebrafish. Murphey RD; Zon LI Methods; 2006 Jul; 39(3):255-61. PubMed ID: 16877005 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Embryotoxicity Using the Zebrafish Model. Truong L; Tanguay RL Methods Mol Biol; 2017; 1641():325-333. PubMed ID: 28748473 [TBL] [Abstract][Full Text] [Related]
16. Improvement of the evaluation method for teratogenicity using zebrafish embryos. Yamashita A; Inada H; Chihara K; Yamada T; Deguchi J; Funabashi H J Toxicol Sci; 2014 Jun; 39(3):453-64. PubMed ID: 24849680 [TBL] [Abstract][Full Text] [Related]
17. Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model. Romero-Sánchez LB; Marí-Beffa M; Carrillo P; Medina MÁ; Díaz-Cuenca A Acta Biomater; 2018 Mar; 68():272-285. PubMed ID: 29288822 [TBL] [Abstract][Full Text] [Related]
18. Vertebrate embryos as tools for anti-angiogenic drug screening and function. Beedie SL; Diamond AJ; Fraga LR; Figg WD; Vargesson N Reprod Toxicol; 2017 Jun; 70():49-59. PubMed ID: 27888069 [TBL] [Abstract][Full Text] [Related]
19. Zebrafish: An emerging whole-organism screening tool in safety pharmacology. Nikam VS; Singh D; Takawale R; Ghante MR Indian J Pharmacol; 2020; 52(6):505-513. PubMed ID: 33666192 [TBL] [Abstract][Full Text] [Related]
20. Analysis of vascular disruption in zebrafish embryos as an endpoint to predict developmental toxicity. Nöth J; Busch W; Tal T; Lai C; Ambekar A; Kießling TR; Scholz S Arch Toxicol; 2024 Feb; 98(2):537-549. PubMed ID: 38129683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]