These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 22615800)
21. Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik. Chon JW; Kim JH; Lee SJ; Hyeon JY; Seo KH Food Microbiol; 2012 Oct; 32(1):217-22. PubMed ID: 22850397 [TBL] [Abstract][Full Text] [Related]
22. The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73. Zigha A; Rosenfeld E; Schmitt P; Duport C J Bacteriol; 2007 Apr; 189(7):2813-24. PubMed ID: 17259311 [TBL] [Abstract][Full Text] [Related]
23. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. van der Voort M; Kuipers OP; Buist G; de Vos WM; Abee T BMC Microbiol; 2008 Apr; 8():62. PubMed ID: 18416820 [TBL] [Abstract][Full Text] [Related]
24. Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres. Passalacqua KD; Varadarajan A; Byrd B; Bergman NH PLoS One; 2009; 4(3):e4904. PubMed ID: 19295911 [TBL] [Abstract][Full Text] [Related]
25. Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus. Kong M; Ryu S Appl Environ Microbiol; 2015 Apr; 81(7):2274-83. PubMed ID: 25595773 [TBL] [Abstract][Full Text] [Related]
26. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics. Mols M; de Been M; Zwietering MH; Moezelaar R; Abee T Environ Microbiol; 2007 Dec; 9(12):2933-44. PubMed ID: 17991024 [TBL] [Abstract][Full Text] [Related]
27. The YmdB protein regulates biofilm formation dependent on the repressor SinR in Bacillus cereus 0-9. Zhang J; Wang H; Xie T; Huang Q; Xiong X; Liu Q; Wang G World J Microbiol Biotechnol; 2020 Oct; 36(11):165. PubMed ID: 33000364 [TBL] [Abstract][Full Text] [Related]
28. Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation. Mols M; van Kranenburg R; van Melis CC; Moezelaar R; Abee T Environ Microbiol; 2010 Apr; 12(4):873-85. PubMed ID: 20074238 [TBL] [Abstract][Full Text] [Related]
30. Common Mechanism of Cross-Resistance Development in Pathogenic Bacteria Bacillus cereus Against Alamethicin and Pediocin Involves Alteration in Lipid Composition. Meena S; Mehla J; Kumar R; Sood SK Curr Microbiol; 2016 Oct; 73(4):534-41. PubMed ID: 27378130 [TBL] [Abstract][Full Text] [Related]
31. Overexpression of Stenotrophomonas maltophilia major facilitator superfamily protein MfsA increases resistance to fluoroquinolone antibiotics. Vattanaviboon P; Dulyayangkul P; Mongkolsuk S; Charoenlap N J Antimicrob Chemother; 2018 May; 73(5):1263-1266. PubMed ID: 29462315 [TBL] [Abstract][Full Text] [Related]
32. Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. Heinrichs JH; Beecher DJ; MacMillan JD; Zilinskas BA J Bacteriol; 1993 Nov; 175(21):6760-6. PubMed ID: 7693651 [TBL] [Abstract][Full Text] [Related]
33. Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant Salmonella Typhimurium. Zheng J; Cui S; Meng J J Antimicrob Chemother; 2009 Jan; 63(1):95-102. PubMed ID: 18984645 [TBL] [Abstract][Full Text] [Related]
34. Constitutive SoxS expression in a fluoroquinolone-resistant strain with a truncated SoxR protein and identification of a new member of the marA-soxS-rob regulon, mdtG. Fàbrega A; Martin RG; Rosner JL; Tavio MM; Vila J Antimicrob Agents Chemother; 2010 Mar; 54(3):1218-25. PubMed ID: 20008776 [TBL] [Abstract][Full Text] [Related]
35. Phenotypic and transcriptomic analyses of mildly and severely salt-stressed Bacillus cereus ATCC 14579 cells. den Besten HM; Mols M; Moezelaar R; Zwietering MH; Abee T Appl Environ Microbiol; 2009 Jun; 75(12):4111-9. PubMed ID: 19395575 [TBL] [Abstract][Full Text] [Related]
36. A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Nag A; Mehra S Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33483304 [TBL] [Abstract][Full Text] [Related]
37. [The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria]. Hasdemir U Mikrobiyol Bul; 2007 Apr; 41(2):309-27. PubMed ID: 17682720 [TBL] [Abstract][Full Text] [Related]
38. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Lapidus A; Goltsman E; Auger S; Galleron N; Ségurens B; Dossat C; Land ML; Broussolle V; Brillard J; Guinebretiere MH; Sanchis V; Nguen-The C; Lereclus D; Richardson P; Wincker P; Weissenbach J; Ehrlich SD; Sorokin A Chem Biol Interact; 2008 Jan; 171(2):236-49. PubMed ID: 17434157 [TBL] [Abstract][Full Text] [Related]
39. Transcriptional regulation of metabolic pathways, alternative respiration and enterotoxin genes in anaerobic growth of Bacillus cereus ATCC 14579. van der Voort M; Abee T J Appl Microbiol; 2009 Sep; 107(3):795-804. PubMed ID: 19302486 [TBL] [Abstract][Full Text] [Related]
40. Gene transcription from the linear plasmid pBClin15 leads to cell lysis and extracellular DNA-dependent aggregation of Bacillus cereus ATCC 14579 in response to quinolone-induced stress. Vörös A; Simm R; Kroeger JK; Kolstø AB Microbiology (Reading); 2013 Nov; 159(Pt 11):2283-2293. PubMed ID: 24002748 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]