These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 22615867)
1. Decoding the folding of Burkholderia glumae lipase: folding intermediates en route to kinetic stability. Pauwels K; Sanchez del Pino MM; Feller G; Van Gelder P PLoS One; 2012; 7(5):e36999. PubMed ID: 22615867 [TBL] [Abstract][Full Text] [Related]
2. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone. El Khattabi M; Van Gelder P; Bitter W; Tommassen J J Biol Chem; 2000 Sep; 275(35):26885-91. PubMed ID: 10859310 [TBL] [Abstract][Full Text] [Related]
3. Structure of a membrane-based steric chaperone in complex with its lipase substrate. Pauwels K; Lustig A; Wyns L; Tommassen J; Savvides SN; Van Gelder P Nat Struct Mol Biol; 2006 Apr; 13(4):374-5. PubMed ID: 16518399 [TBL] [Abstract][Full Text] [Related]
4. Affinity-based isolation of a bacterial lipase through steric chaperone interactions. Pauwels K; Van Gelder P Protein Expr Purif; 2008 Jun; 59(2):342-8. PubMed ID: 18397833 [TBL] [Abstract][Full Text] [Related]
5. Crystallization and crystal manipulation of a steric chaperone in complex with its lipase substrate. Pauwels K; Loris R; Vandenbussche G; Ruysschaert JM; Wyns L; Van Gelder P Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Aug; 61(Pt 8):791-5. PubMed ID: 16511160 [TBL] [Abstract][Full Text] [Related]
6. Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor. El Khattabi M; Ockhuijsen C; Bitter W; Jaeger KE; Tommassen J Mol Gen Genet; 1999 Jun; 261(4-5):770-6. PubMed ID: 10394914 [TBL] [Abstract][Full Text] [Related]
7. Chaperoning Anfinsen: the steric foldases. Pauwels K; Van Molle I; Tommassen J; Van Gelder P Mol Microbiol; 2007 May; 64(4):917-22. PubMed ID: 17501917 [TBL] [Abstract][Full Text] [Related]
8. Isolation, Cloning and Co-Expression of Lipase and Foldase Genes of Putra L; Natadiputri G; Meryandini A; Suwanto A J Microbiol Biotechnol; 2019 Jun; 29(6):944-951. PubMed ID: 31091867 [TBL] [Abstract][Full Text] [Related]
9. Structural and dynamic insights revealing how lipase binding domain MD1 of Pseudomonas aeruginosa foldase affects lipase activation. Viegas A; Dollinger P; Verma N; Kubiak J; Viennet T; Seidel CAM; Gohlke H; Etzkorn M; Kovacic F; Jaeger KE Sci Rep; 2020 Feb; 10(1):3578. PubMed ID: 32107397 [TBL] [Abstract][Full Text] [Related]
10. Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs. Kranen E; Detzel C; Weber T; Jose J Microb Cell Fact; 2014 Jan; 13():19. PubMed ID: 24476025 [TBL] [Abstract][Full Text] [Related]
11. Functional cell-surface display of a lipase-specific chaperone. Wilhelm S; Rosenau F; Becker S; Buest S; Hausmann S; Kolmar H; Jaeger KE Chembiochem; 2007 Jan; 8(1):55-60. PubMed ID: 17173269 [TBL] [Abstract][Full Text] [Related]
12. The Membrane-Integrated Steric Chaperone Lif Facilitates Active Site Opening of Pseudomonas aeruginosa Lipase A. Verma N; Dollinger P; Kovacic F; Jaeger KE; Gohlke H J Comput Chem; 2020 Mar; 41(6):500-512. PubMed ID: 31618459 [TBL] [Abstract][Full Text] [Related]
13. Relevance of metal ions for lipase stability: structural rearrangements induced in the Burkholderia glumae lipase by calcium depletion. Invernizzi G; Papaleo E; Grandori R; De Gioia L; Lotti M J Struct Biol; 2009 Dec; 168(3):562-70. PubMed ID: 19635571 [TBL] [Abstract][Full Text] [Related]
14. Functional display of Pseudomonas and Burkholderia lipases using a translocator domain of EstA autotransporter on the cell surface of Escherichia coli. Yang TH; Kwon MA; Song JK; Pan JG; Rhee JS J Biotechnol; 2010 Apr; 146(3):126-9. PubMed ID: 20138931 [TBL] [Abstract][Full Text] [Related]
15. Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae. Frenken LG; de Groot A; Tommassen J; Verrips CT Mol Microbiol; 1993 Aug; 9(3):591-9. PubMed ID: 8412705 [TBL] [Abstract][Full Text] [Related]
16. Bacterial lipases. Jaeger KE; Ransac S; Dijkstra BW; Colson C; van Heuvel M; Misset O FEMS Microbiol Rev; 1994 Sep; 15(1):29-63. PubMed ID: 7946464 [TBL] [Abstract][Full Text] [Related]
17. Structural and functional insights into the enzymatic activities of lipases from Burkholderia stagnalis and Burkholderia plantarii. Kataoka S; Kawamoto S; Kitagawa S; Kugimiya W; Tsumura K; Akutsu Y; Kubota T; Ishikawa K FEBS Lett; 2024 Jun; 598(11):1411-1421. PubMed ID: 38658173 [TBL] [Abstract][Full Text] [Related]
18. Effects of methanol on a methanol-tolerant bacterial lipase. Santambrogio C; Sasso F; Natalello A; Brocca S; Grandori R; Doglia SM; Lotti M Appl Microbiol Biotechnol; 2013 Oct; 97(19):8609-18. PubMed ID: 23371296 [TBL] [Abstract][Full Text] [Related]
19. Interrupted hydrogen/deuterium exchange reveals the stable core of the remarkably helical molten globule of alpha-beta parallel protein flavodoxin. Nabuurs SM; van Mierlo CPM J Biol Chem; 2010 Feb; 285(6):4165-4172. PubMed ID: 19959481 [TBL] [Abstract][Full Text] [Related]
20. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Rosenau F; Jaeger K Biochimie; 2000 Nov; 82(11):1023-32. PubMed ID: 11099799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]