These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22616014)

  • 1. Kinship index variations among populations and thresholds for familial searching.
    Ge J; Budowle B
    PLoS One; 2012; 7(5):e37474. PubMed ID: 22616014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparisons of familial DNA database searching strategies.
    Ge J; Chakraborty R; Eisenberg A; Budowle B
    J Forensic Sci; 2011 Nov; 56(6):1448-56. PubMed ID: 21827463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of sibling pairs to determine the familial searching efficiency of forensic databases.
    Reid TM; Baird ML; Reid JP; Lee SC; Lee RF
    Forensic Sci Int Genet; 2008 Sep; 2(4):340-2. PubMed ID: 19083845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Familial searching on DNA mixtures with dropout.
    Slooten K
    Forensic Sci Int Genet; 2016 May; 22():128-138. PubMed ID: 26905597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Familial identification: population structure and relationship distinguishability.
    Rohlfs RV; Fullerton SM; Weir BS
    PLoS Genet; 2012 Feb; 8(2):e1002469. PubMed ID: 22346758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forensic investigation approaches of searching relatives in DNA databases.
    Ge J; Budowle B
    J Forensic Sci; 2021 Mar; 66(2):430-443. PubMed ID: 33136341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The limitations of kinship determinations using STR data in ill-defined populations.
    Zvénigorosky V; Sabbagh A; Gonzalez A; Fausser JL; Palstra F; Romanov G; Solovyev A; Barashkov N; Fedorova S; Crubézy É; Ludes B; Keyser C
    Int J Legal Med; 2020 Nov; 134(6):1981-1990. PubMed ID: 32318826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Familial searching: a specialist forensic DNA profiling service utilising the National DNA Database to identify unknown offenders via their relatives--the UK experience.
    Maguire CN; McCallum LA; Storey C; Whitaker JP
    Forensic Sci Int Genet; 2014 Jan; 8(1):1-9. PubMed ID: 24315582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new search tool for familial searches in the Israel Criminal DNA database.
    Ram T; Starinsky-Elbaz S; Avlas O; Issan Y
    Forensic Sci Int; 2023 May; 346():111639. PubMed ID: 36966587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of SmartRank: A likelihood ratio software for searching national DNA databases with complex DNA profiles.
    Benschop CCG; van de Merwe L; de Jong J; Vanvooren V; Kempenaers M; Kees van der Beek CP; Barni F; Reyes EL; Moulin L; Pene L; Haned H; Sijen T
    Forensic Sci Int Genet; 2017 Jul; 29():145-153. PubMed ID: 28441635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of FBI CODIS Core STR Loci expansion on familial DNA database searching.
    Karantzali E; Rosmaraki P; Kotsakis A; Le Roux-Le Pajolec MG; Fitsialos G
    Forensic Sci Int Genet; 2019 Nov; 43():102129. PubMed ID: 31476659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal strategies for familial searching.
    Kruijver M; Meester R; Slooten K
    Forensic Sci Int Genet; 2014 Nov; 13():90-103. PubMed ID: 25082141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-Genetic Ancestry Inference and False Positives in Forensic Familial Searching.
    Fortier AL; Kim J; Rosenberg NA
    G3 (Bethesda); 2020 Aug; 10(8):2893-2902. PubMed ID: 32586848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of familial searches.
    Curran JM; Buckleton JS
    Sci Justice; 2008 Dec; 48(4):164-7. PubMed ID: 19192677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Streamlining the decision-making process for international DNA kinship matching using Worldwide allele frequencies and tailored cutoff log
    Laurent FX; Fischer A; Oldt RF; Kanthaswamy S; Buckleton JS; Hitchin S
    Forensic Sci Int Genet; 2022 Mar; 57():102634. PubMed ID: 34871915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of DNA data within the context of UK forensic science - investigation.
    Pope S; Puch-Solis R
    Emerg Top Life Sci; 2021 Sep; 5(3):395-404. PubMed ID: 34151948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a novel 29-plex Y-STR typing system for forensic application.
    Li M; Zhou W; Zhang Y; Huang L; Wang X; Wu J; Meng M; Wang H; Li C; Bian Y
    Forensic Sci Int Genet; 2020 Jan; 44():102169. PubMed ID: 31614310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of wild card designations and rare alleles in forensic DNA database searches.
    Tvedebrink T; Bright JA; Buckleton JS; Curran JM; Morling N
    Forensic Sci Int Genet; 2015 May; 16():98-104. PubMed ID: 25576850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decision-making in familial database searching: KI alone or not alone?
    Balding DJ; Krawczak M; Buckleton JS; Curran JM
    Forensic Sci Int Genet; 2013 Jan; 7(1):52-4. PubMed ID: 22749791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The first successful use of a low stringency familial match in a French criminal investigation.
    Pham-Hoai E; Crispino F; Hampikian G
    J Forensic Sci; 2014 May; 59(3):816-9. PubMed ID: 24502416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.