BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 22616180)

  • 1. [In vitro biologic evaluation on nano-hydroxyapatite/poly (L-lactic acid) biocomposites fabricated using in-situ growth method].
    Zhang C; Feng Q; Zhang T; Chen J; Lu C; Wu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):307-10. PubMed ID: 22616180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro investigation of nanohydroxyapatite/poly(L-lactic acid) spindle composites used for bone tissue engineering.
    Yan W; Zhang CY; Xia LL; Zhang T; Fang QF
    J Mater Sci Mater Med; 2016 Aug; 27(8):130. PubMed ID: 27379628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.
    Huang J; Xiong J; Liu J; Zhu W; Chen J; Duan L; Zhang J; Wang D
    Biomed Mater Eng; 2015; 26 Suppl 1():S197-205. PubMed ID: 26405972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-hydroxyapatite/poly(L-lactic acid) composite synthesized by a modified in situ precipitation: preparation and properties.
    Zhang CY; Lu H; Zhuang Z; Wang XP; Fang QF
    J Mater Sci Mater Med; 2010 Dec; 21(12):3077-83. PubMed ID: 20890640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers.
    Peng F; Shaw MT; Olson JR; Wei M
    J Biomater Appl; 2013 Feb; 27(6):641-9. PubMed ID: 22274879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance test of Nano-HA/PLLA composites for interface fixation.
    Zhu W; Huang J; Lu W; Sun Q; Peng L; Fen W; Li H; Ou Y; Liu H; Wang D; Zeng Y
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):331-5. PubMed ID: 23957645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).
    Liuyun J; Lixin J; Chengdong X; Lijuan X; Ye L
    J Biomater Appl; 2016 Jan; 30(6):750-8. PubMed ID: 25940015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres.
    Kim MJ; Koh YH
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2266-72. PubMed ID: 23498257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Preparation and degradation of poly(DL-lactide)/calcium phosphates porous scaffolds].
    Quan D; Liao K; Luo B; Lu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):174-7. PubMed ID: 15143533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials.
    Jing L; Chen L; Peng H; Ji M; Xiong Y; Lv G
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2154-2170. PubMed ID: 28950766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.
    Nguyen NK; Leoni M; Maniglio D; Migliaresi C
    J Biomater Appl; 2013 Jul; 28(1):49-61. PubMed ID: 22492195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility.
    Hong Z; Zhang P; He C; Qiu X; Liu A; Chen L; Chen X; Jing X
    Biomaterials; 2005 Nov; 26(32):6296-304. PubMed ID: 15913758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration.
    Sui G; Yang X; Mei F; Hu X; Chen G; Deng X; Ryu S
    J Biomed Mater Res A; 2007 Aug; 82(2):445-54. PubMed ID: 17295252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds.
    Chen J; Chu B; Hsiao BS
    J Biomed Mater Res A; 2006 Nov; 79(2):307-17. PubMed ID: 16817203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of nano composite scaffold of poly(L-lactic acid)/hydroxyapatite.
    Wang X; Song G; Lou T
    J Mater Sci Mater Med; 2010 Jan; 21(1):183-8. PubMed ID: 19705258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.