BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22616806)

  • 1. H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species.
    He D; Garg S; Waite TD
    Langmuir; 2012 Jul; 28(27):10266-75. PubMed ID: 22616806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study.
    Ho CM; Yau SK; Lok CN; So MH; Che CM
    Chem Asian J; 2010 Feb; 5(2):285-93. PubMed ID: 20063340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative dissolution of silver nanoparticles by dioxygen: a kinetic and mechanistic study.
    Ho CM; Wong CK; Yau SK; Lok CN; Che CM
    Chem Asian J; 2011 Sep; 6(9):2506-11. PubMed ID: 21608134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide-mediated formation and charging of silver nanoparticles.
    Jones AM; Garg S; He D; Pham AN; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1428-34. PubMed ID: 21265570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemiluminescence of luminol catalyzed by silver nanoparticles.
    Chen H; Gao F; He R; Cui D
    J Colloid Interface Sci; 2007 Nov; 315(1):158-63. PubMed ID: 17681516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid, reversible preparation of size-controllable silver nanoplates by chemical redox.
    Roh J; Yi J; Kim Y
    Langmuir; 2010 Jul; 26(14):11621-3. PubMed ID: 20550181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics.
    Zhang W; Yao Y; Sullivan N; Chen Y
    Environ Sci Technol; 2011 May; 45(10):4422-8. PubMed ID: 21513312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles.
    Zhang W; Yao Y; Li K; Huang Y; Chen Y
    Environ Pollut; 2011 Dec; 159(12):3757-62. PubMed ID: 21835520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions.
    Akaighe N; Maccuspie RI; Navarro DA; Aga DS; Banerjee S; Sohn M; Sharma VK
    Environ Sci Technol; 2011 May; 45(9):3895-901. PubMed ID: 21456573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers.
    Zhang H; Smith JA; Oyanedel-Craver V
    Water Res; 2012 Mar; 46(3):691-9. PubMed ID: 22169660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.
    El Badawy AM; Luxton TP; Silva RG; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2010 Feb; 44(4):1260-6. PubMed ID: 20099802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications.
    Annadhasan M; SankarBabu VR; Naresh R; Umamaheswari K; Rajendiran N
    Colloids Surf B Biointerfaces; 2012 Aug; 96():14-21. PubMed ID: 22537720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface charge-dependent toxicity of silver nanoparticles.
    El Badawy AM; Silva RG; Morris B; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2011 Jan; 45(1):283-7. PubMed ID: 21133412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects.
    He D; Dorantes-Aranda JJ; Waite TD
    Environ Sci Technol; 2012 Aug; 46(16):8731-8. PubMed ID: 22816991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna.
    Zhao CM; Wang WX
    Nanotoxicology; 2012 Jun; 6(4):361-70. PubMed ID: 21591875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol.
    Zhang P; Shao C; Zhang Z; Zhang M; Mu J; Guo Z; Liu Y
    Nanoscale; 2011 Aug; 3(8):3357-63. PubMed ID: 21761072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.
    Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S
    Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion release kinetics and particle persistence in aqueous nano-silver colloids.
    Liu J; Hurt RH
    Environ Sci Technol; 2010 Mar; 44(6):2169-75. PubMed ID: 20175529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions.
    Xiu ZM; Ma J; Alvarez PJ
    Environ Sci Technol; 2011 Oct; 45(20):9003-8. PubMed ID: 21950450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates.
    Lukman AI; Gong B; Marjo CE; Roessner U; Harris AT
    J Colloid Interface Sci; 2011 Jan; 353(2):433-44. PubMed ID: 20974473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.