These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22616842)

  • 1. Zeroing of six-component handrim dynamometer for biomechanical studies of manual wheelchair locomotion.
    Sauret C; Dabonneville M; Couétard Y; de Saint Rémy N; Kauffmann P; Cid M; Vaslin P
    Comput Methods Biomech Biomed Engin; 2014; 17(4):416-22. PubMed ID: 22616842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor.
    Nam KT; Jang DJ; Kim YC; Heo Y; Hong EP
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27509508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill.
    Vegter RJ; Lamoth CJ; de Groot S; Veeger DH; van der Woude LH
    J Neuroeng Rehabil; 2013 Jan; 10():9. PubMed ID: 23360756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Fabrication of an Instrumented Handrim to Measure the Kinetic and Kinematic Information by the Hand of User for 3D Analysis of Manual Wheelchair Propulsion Dynamics.
    Mallakzadeh M; Akbari H
    J Med Signals Sens; 2014 Oct; 4(4):256-66. PubMed ID: 25426429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach.
    Richter WM
    Med Eng Phys; 2001 Dec; 23(10):707-12. PubMed ID: 11801412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in wheelchair biomechanics within the first 120 minutes of practice: spatiotemporal parameters, handrim forces, motor force, rolling resistance and fore-aft stability.
    Eydieux N; Hybois S; Siegel A; Bascou J; Vaslin P; Pillet H; Fodé P; Sauret C
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):305-313. PubMed ID: 30786787
    [No Abstract]   [Full Text] [Related]  

  • 7. Dynamic calibration of a wheelchair dynamometer.
    DiGiovine CP; Cooper RA; Boninger ML
    J Rehabil Res Dev; 2001; 38(1):41-55. PubMed ID: 11322470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical Note: A Novel Servo-Driven Dual-Roller Handrim Wheelchair Ergometer.
    de Klerk R; Vegter RJK; Veeger HEJ; van der Woude LHV
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):953-960. PubMed ID: 32070986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of vertical reaction forces during propulsion of three different one-arm drive wheelchairs by hemiplegic users.
    Mandy A; Redhead L; McCudden C; Michaelis J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):242-7. PubMed ID: 23527873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences of a cross slope on wheelchair handrim biomechanics.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 2-D model of wheelchair propulsion.
    Morrow DA; Guo LY; Zhao KD; Su FC; An KN
    Disabil Rehabil; 2003 Feb 18-Mar 4; 25(4-5):192-6. PubMed ID: 12623626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the performance of an ergonomic handrim as a pain-relieving intervention for manual wheelchair users.
    Koontz AM; Yang Y; Boninger DS; Kanaly J; Cooper RA; Boninger ML; Dieruf K; Ewer L
    Assist Technol; 2006; 18(2):123-43; quiz 145. PubMed ID: 17236472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.
    Sprigle S; Huang M
    Assist Technol; 2015; 27(4):226-35; quiz 236-7. PubMed ID: 26691562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of wheelchair handrim tube diameter on propulsion efficiency and force application (tube diameter and efficiency in wheelchairs).
    van der Linden ML; Valent L; Veeger HE; van der Woude LH
    IEEE Trans Rehabil Eng; 1996 Sep; 4(3):123-32. PubMed ID: 8800215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis.
    Guo LY; Su FC; An KN
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):107-15. PubMed ID: 16226359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a biofeedback system for wheelchair propulsion training.
    Guo L; Kwarciak AM; Rodriguez R; Sarkar N; Richter WM
    Rehabil Res Pract; 2011; 2011():590780. PubMed ID: 22110977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of rolling resistances on handrim kinetics during the performance of wheelies among manual wheelchair users with a spinal cord injury.
    Lalumiere M; Gagnon D; Routhier F; Desroches G; Hassan J; Bouyer LJ
    Spinal Cord; 2013 Mar; 51(3):245-51. PubMed ID: 23184024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Glove Type on Simulated Wheelchair Racing Propulsion: A Pilot Study.
    Rice I; Dysterheft J; Bleakney AW; Cooper RA
    Int J Sports Med; 2016 Jan; 37(1):30-5. PubMed ID: 26509373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wheelchair propulsion: Force orientation and amplitude prediction with Recurrent Neural Network.
    Hernandez V; Rezzoug N; Gorce P; Venture G
    J Biomech; 2018 Sep; 78():166-171. PubMed ID: 30097268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.