BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22616901)

  • 1. Chemoselective Schmidt reaction mediated by triflic acid: selective synthesis of nitriles from aldehydes.
    Rokade BV; Prabhu KR
    J Org Chem; 2012 Jun; 77(12):5364-70. PubMed ID: 22616901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing a protic ionic liquid from aminoethyl piperazine and triflic acid immobilized on pectin as a reusable nanocatalyst for the selective Schmidt synthesis of nitriles.
    Bakhtiarian M; Khodaei MM
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128445. PubMed ID: 38029916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Schmidt Conversion of Aldehydes to Nitriles Using Azidotrimethylsilane in 1,1,1,3,3,3-Hexafluoro-2-propanol.
    Motiwala HF; Yin Q; Aubé J
    Molecules; 2015 Dec; 21(1):E45. PubMed ID: 26729081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brønsted acid TfOH-mediated [3 + 2] cycloaddition reactions of diarylvinylidenecyclopropanes with nitriles.
    Li W; Shi M
    J Org Chem; 2008 Jun; 73(11):4151-4. PubMed ID: 18447391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of tetrasubstituted alkenes through a palladium-catalyzed domino carbopalladation/C-H-activation reaction.
    Tietze LF; Hungerland T; Düfert A; Objartel I; Stalke D
    Chemistry; 2012 Mar; 18(11):3286-91. PubMed ID: 22259072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chemoselective, one-pot transformation of aldehydes to nitriles.
    Laulhé S; Gori SS; Nantz MH
    J Org Chem; 2012 Oct; 77(20):9334-7. PubMed ID: 22928794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled and chemoselective reduction of secondary amides.
    Pelletier G; Bechara WS; Charette AB
    J Am Chem Soc; 2010 Sep; 132(37):12817-9. PubMed ID: 20735125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductions of aliphatic and aromatic nitriles to primary amines with diisopropylaminoborane.
    Haddenham D; Pasumansky L; DeSoto J; Eagon S; Singaram B
    J Org Chem; 2009 Mar; 74(5):1964-70. PubMed ID: 19191712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triflic acid catalyzed formal [3 + 2] cycloaddition of donor-acceptor oxiranes and nitriles: a facile access to 3-oxazolines.
    Zhou H; Zeng X; Ding L; Xie Y; Zhong G
    Org Lett; 2015 May; 17(10):2385-7. PubMed ID: 25938163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Chemoselective Synthesis of Indole Derivatives.
    Wang Y; Zhang R; Li J; Rao CB; Ye X; Dong D
    Chemistry; 2023 May; 29(28):e202300191. PubMed ID: 36872294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-heterocyclic carbene catalyzed highly chemoselective intermolecular crossed acyloin condensation of aromatic aldehydes with trifluoroacetaldehyde ethyl hemiacetal.
    Ramanjaneyulu BT; Mahesh S; Vijaya Anand R
    Org Lett; 2015 Jan; 17(1):6-9. PubMed ID: 25512089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Access to nitriles from aldehydes mediated by an oxoammonium salt.
    Kelly CB; Lambert KM; Mercadante MA; Ovian JM; Bailey WF; Leadbeater NE
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4241-5. PubMed ID: 25665019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indium-mediated asymmetric Barbier-type propargylations: additions to aldehydes and ketones and mechanistic investigation of the organoindium reagents.
    Haddad TD; Hirayama LC; Buckley JJ; Singaram B
    J Org Chem; 2012 Jan; 77(2):889-98. PubMed ID: 22148263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A convenient and efficient route for the allylation of aromatic amines and alpha-aryl aldehydes with alkynes in the presence of a Pd(0)/PhCOOH combined catalyst system.
    Patil NT; Wu H; Kadota I; Yamamoto Y
    J Org Chem; 2004 Dec; 69(25):8745-50. PubMed ID: 15575752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indium tri(isopropoxide)-catalyzed selective Meerwein-Ponndorf-Verley reduction of aliphatic and aromatic aldehydes.
    Lee J; Ryu T; Park S; Lee PH
    J Org Chem; 2012 May; 77(10):4821-5. PubMed ID: 22563904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of pyrazoles via CuI-mediated electrophilic cyclizations of α,β-alkynic hydrazones.
    Zora M; Kivrak A
    J Org Chem; 2011 Nov; 76(22):9379-90. PubMed ID: 21992574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicomponent synthesis of dihydropyrimidines and thiazines.
    Vugts DJ; Koningstein MM; Schmitz RF; de Kanter FJ; Groen MB; Orru RV
    Chemistry; 2006 Sep; 12(27):7178-89. PubMed ID: 16847990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palladium pincer complex-catalyzed trimethyltin substitution of functionalized propargylic substrates. An efficient route to propargyl- and allenyl-stannanes.
    Kjellgren J; Sundén H; Szabó KJ
    J Am Chem Soc; 2004 Jan; 126(2):474-5. PubMed ID: 14719938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoselective thioacetalisation and transthioacetalisation of carbonyl compounds catalysed by tetrabutylammonium tribromide (TBATB).
    Naik S; Gopinath R; Goswami M; Patel BK
    Org Biomol Chem; 2004 Jun; 2(11):1670-7. PubMed ID: 15162221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient three-component synthesis of beta-lactams from N-methylhydroxylamine, aldehydes, and phenylacetylene.
    Zhao L; Li CJ
    Chem Asian J; 2006 Jul; 1(1-2):203-9. PubMed ID: 17441056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.