BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 22616942)

  • 1. Passive sequestration of atmospheric CO2 through coupled plant-mineral reactions in urban soils.
    Manning DA; Renforth P
    Environ Sci Technol; 2013 Jan; 47(1):135-41. PubMed ID: 22616942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Removal of Atmospheric CO2 by Urban Soils.
    Washbourne CL; Lopez-Capel E; Renforth P; Ascough PL; Manning DA
    Environ Sci Technol; 2015 May; 49(9):5434-40. PubMed ID: 25837769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red mud as a carbon sink: variability, affecting factors and environmental significance.
    Si C; Ma Y; Lin C
    J Hazard Mater; 2013 Jan; 244-245():54-9. PubMed ID: 23246940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of atmospheric CO
    Jorat ME; Kraavi KE; Manning DAC
    J Environ Manage; 2022 Jul; 314():115016. PubMed ID: 35460984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2).
    Wilson S; Dipple GM; Power IM; Barker SL; Fallon SJ; Southam G
    Environ Sci Technol; 2011 Sep; 45(18):7727-36. PubMed ID: 21854037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon.
    Washbourne CL; Renforth P; Manning DA
    Sci Total Environ; 2012 Aug; 431():166-75. PubMed ID: 22683756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone.
    Karberg NJ; Pregitzer KS; King JS; Friend AL; Wood JR
    Oecologia; 2005 Jan; 142(2):296-306. PubMed ID: 15378342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex situ aqueous mineral carbonation.
    Gerdemann SJ; O'Connor WK; Dahlin DC; Penner LR; Rush H
    Environ Sci Technol; 2007 Apr; 41(7):2587-93. PubMed ID: 17438820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production.
    Rau GH; Carroll SA; Bourcier WL; Singleton MJ; Smith MM; Aines RD
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10095-100. PubMed ID: 23729814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of diffusive transport on carbonate mineral formation from magnesium silicate-CO2-water reactions.
    Giammar DE; Wang F; Guo B; Surface JA; Peters CA; Conradi MS; Hayes SE
    Environ Sci Technol; 2014 Dec; 48(24):14344-51. PubMed ID: 25420634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in the export of alkalinity from North America's largest river.
    Raymond PA; Cole JJ
    Science; 2003 Jul; 301(5629):88-91. PubMed ID: 12843391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO₂ sequestration through mineral carbonation of iron oxyhydroxides.
    Lammers K; Murphy R; Riendeau A; Smirnov A; Schoonen MA; Strongin DR
    Environ Sci Technol; 2011 Dec; 45(24):10422-8. PubMed ID: 22066460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and mechanisms of cyanobacterially induced precipitation of magnesium silicate.
    Lamérand C; Shirokova LS; Petit M; Bénézeth P; Rols JL; Pokrovsky OS
    Geobiology; 2022 Jul; 20(4):560-574. PubMed ID: 35678333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach.
    Taylor LL; Banwart SA; Valdes PJ; Leake JR; Beerling DJ
    Philos Trans R Soc Lond B Biol Sci; 2012 Feb; 367(1588):565-82. PubMed ID: 22232768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated carbonation of brucite in mine tailings for carbon sequestration.
    Harrison AL; Power IM; Dipple GM
    Environ Sci Technol; 2013 Jan; 47(1):126-34. PubMed ID: 22770473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.
    ten Berge HF; van der Meer HG; Steenhuizen JW; Goedhart PW; Knops P; Verhagen J
    PLoS One; 2012; 7(8):e42098. PubMed ID: 22912685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm.
    Taylor LL; Leake JR; Quirk J; Hardy K; Banwart SA; Beerling DJ
    Geobiology; 2009 Mar; 7(2):171-91. PubMed ID: 19323695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.
    Morales-Flórez V; Santos A; López A; Moriña I; Esquivias L
    Waste Manag Res; 2014 Dec; 32(12):1178-85. PubMed ID: 25012303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residual CO2 trapping in Indiana limestone.
    El-Maghraby RM; Blunt MJ
    Environ Sci Technol; 2013 Jan; 47(1):227-33. PubMed ID: 23167314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineral CO2 sequestration by steel slag carbonation.
    Huijgen WJ; Witkamp GJ; Comans RN
    Environ Sci Technol; 2005 Dec; 39(24):9676-82. PubMed ID: 16475351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.