These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 22617036)

  • 1. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA.
    Chen C; Ma X; He Y
    Bioresour Technol; 2012 Aug; 117():264-73. PubMed ID: 22617036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA.
    Azizi K; Keshavarz Moraveji M; Abedini Najafabadi H
    Bioresour Technol; 2017 Nov; 243():481-491. PubMed ID: 28689141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic pyrolysis of Chlorella vulgaris: Kinetic and thermodynamic analysis.
    Fong MJB; Loy ACM; Chin BLF; Lam MK; Yusup S; Jawad ZA
    Bioresour Technol; 2019 Oct; 289():121689. PubMed ID: 31252316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.
    Chen C; Lu Z; Ma X; Long J; Peng Y; Hu L; Lu Q
    Bioresour Technol; 2013 Sep; 144():563-71. PubMed ID: 23890976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparent kinetics of high temperature oxidative decomposition of microalgal biomass.
    Ali SA; Razzak SA; Hossain MM
    Bioresour Technol; 2015 Jan; 175():569-77. PubMed ID: 25459869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis.
    Agrawal A; Chakraborty S
    Bioresour Technol; 2013 Jan; 128():72-80. PubMed ID: 23196224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.
    Ma Y; Niu R; Wang X; Wang Q; Wang X; Sun X
    Waste Manag Res; 2014 Nov; 32(11):1123-33. PubMed ID: 25378256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis.
    He Y; Chang C; Li P; Han X; Li H; Fang S; Chen J; Ma X
    Bioresour Technol; 2018 Jul; 259():294-303. PubMed ID: 29573608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of co-pyrolysis of sawdust, coal and tar.
    Montiano MG; Díaz-Faes E; Barriocanal C
    Bioresour Technol; 2016 Apr; 205():222-9. PubMed ID: 26829530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.
    Gao Y; Tahmasebi A; Dou J; Yu J
    Bioresour Technol; 2016 May; 207():276-84. PubMed ID: 26894568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis kinetics behavior of solid leather wastes.
    Guan Y; Liu C; Peng Q; Zaman F; Zhang H; Jin Z; Wang A; Wang W; Huang Y
    Waste Manag; 2019 Dec; 100():122-127. PubMed ID: 31536922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonisothermal thermogravimetric analysis of Thai lignite with high CaO content.
    Pintana P; Tippayawong N
    ScientificWorldJournal; 2013; 2013():216975. PubMed ID: 24250259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal characteristics and surface morphology of char during co-pyrolysis of low-rank coal blended with microalgal biomass: Effects of Nannochloropsis and Chlorella.
    Wu Z; Yang W; Yang B
    Bioresour Technol; 2018 Feb; 249():501-509. PubMed ID: 29078176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas.
    Hu Z; Ma X; Li L
    Bioresour Technol; 2013 Jul; 140():220-6. PubMed ID: 23693148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis.
    Kaur R; Gera P; Jha MK; Bhaskar T
    Bioresour Technol; 2018 Feb; 250():422-428. PubMed ID: 29195154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on the co-pyrolysis of coal gangue and coffee industry residue based on machine language: Interaction, kinetics, and thermodynamics.
    Ni Z; Bi H; Jiang C; Tian J; Sun H; Zhou W; Lin Q
    Sci Total Environ; 2022 Jan; 804():150217. PubMed ID: 34520910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis.
    Boubacar Laougé Z; Merdun H
    Bioresour Technol; 2020 Mar; 299():122602. PubMed ID: 31869633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic Study of Copyrolysis of the Green Microalgae
    Subagyono RRDJN; Masdalifa W; Aminah S; Nugroho RA; Mollah M; Londong Allo V; Gunawan R
    ACS Omega; 2021 Nov; 6(47):32032-32042. PubMed ID: 34870026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer.
    Shuping Z; Yulong W; Mingde Y; Chun L; Junmao T
    Bioresour Technol; 2010 Jan; 101(1):359-65. PubMed ID: 19720523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal stability and decompositions kinetics under non-isothermal conditions of imatinib mesylate α form.
    Mucha I; Baranowski P; Owczarek A; Gajda M; Pluta J; Górniak A; Niklewicz P; Karolewicz B
    J Pharm Biomed Anal; 2016 Sep; 129():9-14. PubMed ID: 27392171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.