These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22617300)

  • 1. Autonomous spacecraft landing through human pre-attentive vision.
    Schiavone G; Izzo D; Simões LF; de Croon GC
    Bioinspir Biomim; 2012 Jun; 7(2):025007. PubMed ID: 22617300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid biologically-inspired scene classification using features shared with visual attention.
    Siagian C; Itti L
    IEEE Trans Pattern Anal Mach Intell; 2007 Feb; 29(2):300-12. PubMed ID: 17170482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An object-based visual attention model for robotic applications.
    Yu Y; Mann GK; Gosine RG
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1398-412. PubMed ID: 20129865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual attention on the sphere.
    Bogdanova I; Bur A; Hugli H
    IEEE Trans Image Process; 2008 Nov; 17(11):2000-14. PubMed ID: 18854253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GAFFE: a gaze-attentive fixation finding engine.
    Rajashekar U; van der Linde I; Bovik AC; Cormack LK
    IEEE Trans Image Process; 2008 Apr; 17(4):564-73. PubMed ID: 18390364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A visual-attention model using Earth Mover's Distance-based saliency measurement and nonlinear feature combination.
    Lin Y; Tang YY; Fang B; Shang Z; Huang Y; Wang S
    IEEE Trans Pattern Anal Mach Intell; 2013 Feb; 35(2):314-28. PubMed ID: 22641707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and robust generation of feature maps for region-based visual attention.
    Aziz MZ; Mertsching B
    IEEE Trans Image Process; 2008 May; 17(5):633-44. PubMed ID: 18390370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building high-performing human-like tactical agents through observation and experience.
    Stein G; Gonzalez AJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):792-804. PubMed ID: 21172756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition.
    Gao D; Han S; Vasconcelos N
    IEEE Trans Pattern Anal Mach Intell; 2009 Jun; 31(6):989-1005. PubMed ID: 19372605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A test bed for insect-inspired robotic control.
    Reiser MB; Dickinson MH
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2267-85. PubMed ID: 14599319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust object recognition with cortex-like mechanisms.
    Serre T; Wolf L; Bileschi S; Riesenhuber M; Poggio T
    IEEE Trans Pattern Anal Mach Intell; 2007 Mar; 29(3):411-26. PubMed ID: 17224612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning to recognize objects on the fly: a neurally based dynamic field approach.
    Faubel C; Schöner G
    Neural Netw; 2008 May; 21(4):562-76. PubMed ID: 18501555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attention-based dynamic visual search using inner-scene similarity: algorithms and bounds.
    Avraham T; Lindenbaum M
    IEEE Trans Pattern Anal Mach Intell; 2006 Feb; 28(2):251-64. PubMed ID: 16468621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots.
    Yoo JK; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):125-39. PubMed ID: 21878418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contextual action recognition and target localization with an active allocation of attention on a humanoid robot.
    Ognibene D; Chinellato E; Sarabia M; Demiris Y
    Bioinspir Biomim; 2013 Sep; 8(3):035002. PubMed ID: 23981534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representing the observer in electro-optical target acquisition models.
    Vollmerhausen RH
    Opt Express; 2009 Sep; 17(20):17253-68. PubMed ID: 19907512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new active visual system for humanoid robots.
    Xu D; Li YF; Tan M; Shen Y
    IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):320-30. PubMed ID: 18348917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-level spatiochromatic grouping for saliency estimation.
    Murray N; Vanrell M; Otazu X; Parraga CA
    IEEE Trans Pattern Anal Mach Intell; 2013 Nov; 35(11):2810-6. PubMed ID: 24051738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the world in real time: how robots engineer information.
    Davison AJ
    Philos Trans A Math Phys Eng Sci; 2003 Dec; 361(1813):2875-90. PubMed ID: 14667303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.