BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22617389)

  • 1. Why is F19Ap53 unable to bind MDM2? Simulations suggest crack propagation modulates binding.
    Dastidar SG; Lane DP; Verma CS
    Cell Cycle; 2012 Jun; 11(12):2239-47. PubMed ID: 22617389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of p53 binding to MDM2: computational studies reveal important roles of Tyr100.
    Dastidar SG; Lane DP; Verma CS
    BMC Bioinformatics; 2009 Dec; 10 Suppl 15(Suppl 15):S6. PubMed ID: 19958516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conformationally flexible S9-S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo.
    Shimizu H; Burch LR; Smith AJ; Dornan D; Wallace M; Ball KL; Hupp TR
    J Biol Chem; 2002 Aug; 277(32):28446-58. PubMed ID: 11925449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-site regulation of MDM2 E3-ubiquitin ligase activity.
    Wallace M; Worrall E; Pettersson S; Hupp TR; Ball KL
    Mol Cell; 2006 Jul; 23(2):251-63. PubMed ID: 16857591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.
    Samanta S; Mukherjee S
    J Comput Aided Mol Des; 2017 Oct; 31(10):891-903. PubMed ID: 28871352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MDM2 protein-mediated ubiquitination of numb protein: identification of a second physiological substrate of MDM2 that employs a dual-site docking mechanism.
    Sczaniecka M; Gladstone K; Pettersson S; McLaren L; Huart AS; Wallace M
    J Biol Chem; 2012 Apr; 287(17):14052-68. PubMed ID: 22337874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel p53 phosphorylation site within the MDM2 ubiquitination signal: II. a model in which phosphorylation at SER269 induces a mutant conformation to p53.
    Fraser JA; Madhumalar A; Blackburn E; Bramham J; Walkinshaw MD; Verma C; Hupp TR
    J Biol Chem; 2010 Nov; 285(48):37773-86. PubMed ID: 20847049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular recognition of p53 and MDM2 by USP7/HAUSP.
    Sheng Y; Saridakis V; Sarkari F; Duan S; Wu T; Arrowsmith CH; Frappier L
    Nat Struct Mol Biol; 2006 Mar; 13(3):285-91. PubMed ID: 16474402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a novel MDM2 binding peptide based on the p53 family.
    Madhumalar A; Lee HJ; Brown CJ; Lane D; Verma C
    Cell Cycle; 2009 Sep; 8(17):2828-36. PubMed ID: 19713735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutant p53 Sequestration of the MDM2 Acidic Domain Inhibits E3 Ligase Activity.
    Yang L; Song T; Cheng Q; Chen L; Chen J
    Mol Cell Biol; 2019 Feb; 39(4):. PubMed ID: 30455251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition Dynamics of p53 and MDM2: Implications for Peptide Design.
    ElSawy KM; Lane DP; Verma CS; Caves LS
    J Phys Chem B; 2016 Jan; 120(2):320-8. PubMed ID: 26701330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential binding of p53 and nutlin to MDM2 and MDMX: computational studies.
    Joseph TL; Madhumalar A; Brown CJ; Lane DP; Verma CS
    Cell Cycle; 2010 Mar; 9(6):1167-81. PubMed ID: 20190571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the p53-MDM2 interaction by phosphorylation of Thr18: a computational study.
    Lee HJ; Srinivasan D; Coomber D; Lane DP; Verma CS
    Cell Cycle; 2007 Nov; 6(21):2604-11. PubMed ID: 17957142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatiotemporal characterization of the effect of p53 phosphorylation on its interaction with MDM2.
    ElSawy KM; Sim A; Lane DP; Verma CS; Caves LS
    Cell Cycle; 2015; 14(2):179-88. PubMed ID: 25584963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway.
    Hu M; Gu L; Li M; Jeffrey PD; Gu W; Shi Y
    PLoS Biol; 2006 Feb; 4(2):e27. PubMed ID: 16402859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphomimetic mutation of the N-terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis.
    Fraser JA; Worrall EG; Lin Y; Landre V; Pettersson S; Blackburn E; Walkinshaw M; Muller P; Vojtesek B; Ball K; Hupp TR
    J Mol Biol; 2015 Apr; 427(8):1728-47. PubMed ID: 25543083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99.
    Lee XA; Verma C; Sim AYL
    Proteins; 2017 Aug; 85(8):1493-1506. PubMed ID: 28425639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of specificity of MDM2 for the activation domains of p53 and p65: proline27 disrupts the MDM2-binding motif of p53.
    Zondlo SC; Lee AE; Zondlo NJ
    Biochemistry; 2006 Oct; 45(39):11945-57. PubMed ID: 17002294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitination of p53 at multiple sites in the DNA-binding domain.
    Chan WM; Mak MC; Fung TK; Lau A; Siu WY; Poon RY
    Mol Cancer Res; 2006 Jan; 4(1):15-25. PubMed ID: 16446403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations.
    Xiong K; Zwier MC; Myshakina NS; Burger VM; Asher SA; Chong LT
    J Phys Chem A; 2011 Sep; 115(34):9520-7. PubMed ID: 21528875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.