These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22617400)

  • 41. Characteristics of step-defined physical activity categories in U.S. adults.
    Sisson SB; Camhi SM; Tudor-Locke C; Johnson WD; Katzmarzyk PT
    Am J Health Promot; 2012; 26(3):152-9. PubMed ID: 22208412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities.
    Kwon S; Zavos P; Nickele K; Sugianto A; Albert MV
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31330889
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of body mass index on step count accuracy of physical activity monitors.
    Feito Y; Bassett DR; Thompson DL; Tyo BM
    J Phys Act Health; 2012 May; 9(4):594-600. PubMed ID: 21946229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of Physical Activity Intensity in Spinal Cord Injury Using a Wrist-Worn ActiGraph Monitor.
    Veerubhotla A; Hong E; Knezevic S; Spungen A; Ding D
    Arch Phys Med Rehabil; 2020 Sep; 101(9):1563-1569. PubMed ID: 32502566
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Classification of periodic activities using the Wasserstein distance.
    Oudre L; Jakubowicz J; Bianchi P; Simon C
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1610-9. PubMed ID: 22434794
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methods to estimate aspects of physical activity and sedentary behavior from high-frequency wrist accelerometer measurements.
    Staudenmayer J; He S; Hickey A; Sasaki J; Freedson P
    J Appl Physiol (1985); 2015 Aug; 119(4):396-403. PubMed ID: 26112238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of inertial sensor sampling frequency on the accuracy of measurement parameters in rearfoot running.
    Mitschke C; Zaumseil F; Milani TL
    Comput Methods Biomech Biomed Engin; 2017 Nov; 20(14):1502-1511. PubMed ID: 28948846
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Classifying household and locomotive activities using a triaxial accelerometer.
    Oshima Y; Kawaguchi K; Tanaka S; Ohkawara K; Hikihara Y; Ishikawa-Takata K; Tabata I
    Gait Posture; 2010 Mar; 31(3):370-4. PubMed ID: 20138524
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cross-validation of waist-worn GENEA accelerometer cut-points.
    Welch WA; Bassett DR; Freedson PS; John D; Steeves JA; Conger SA; Ceaser TG; Howe CA; Sasaki JE
    Med Sci Sports Exerc; 2014 Sep; 46(9):1825-30. PubMed ID: 24496118
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accuracy and precision of wrist-worn actigraphy for measuring steps taken during over-ground and treadmill walking in adults with Parkinson's disease.
    Cederberg KLJ; Jeng B; Sasaki JE; Lai B; Bamman M; Motl RW
    Parkinsonism Relat Disord; 2021 Jul; 88():102-107. PubMed ID: 34171566
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of Sedentary Estimates between activPAL and Hip- and Wrist-Worn ActiGraph.
    Koster A; Shiroma EJ; Caserotti P; Matthews CE; Chen KY; Glynn NW; Harris TB
    Med Sci Sports Exerc; 2016 Aug; 48(8):1514-1522. PubMed ID: 27031744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Classifying running speed conditions using a single wearable sensor: Optimal segmentation and feature extraction methods.
    Benson LC; Clermont CA; Osis ST; Kobsar D; Ferber R
    J Biomech; 2018 Apr; 71():94-99. PubMed ID: 29454542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Actigraph accelerometer-defined boundaries for sedentary behaviour and physical activity intensities in 7 year old children.
    Pulsford RM; Cortina-Borja M; Rich C; Kinnafick FE; Dezateux C; Griffiths LJ
    PLoS One; 2011; 6(8):e21822. PubMed ID: 21853021
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Minimum Sampling Frequency for Accurate and Reliable Tibial Acceleration Measurements During Rearfoot Strike Running in the Field.
    Aubol KG; Milner CE
    J Appl Biomech; 2023 Jun; 39(3):193-198. PubMed ID: 37001866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intermonitor variability of GT3X accelerometer.
    Santos-Lozano A; Torres-Luque G; Marín PJ; Ruiz JR; Lucia A; Garatachea N
    Int J Sports Med; 2012 Dec; 33(12):994-9. PubMed ID: 22791617
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Validity of two wearable monitors to estimate breaks from sedentary time.
    Lyden K; Kozey Keadle SL; Staudenmayer JW; Freedson PS
    Med Sci Sports Exerc; 2012 Nov; 44(11):2243-52. PubMed ID: 22648343
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Classifiers for Accelerometer-Measured Behaviors in Older Women.
    Rosenberg D; Godbole S; Ellis K; Di C; Lacroix A; Natarajan L; Kerr J
    Med Sci Sports Exerc; 2017 Mar; 49(3):610-616. PubMed ID: 28222058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of activity type in preschool children using machine learning techniques.
    Hagenbuchner M; Cliff DP; Trost SG; Van Tuc N; Peoples GE
    J Sci Med Sport; 2015 Jul; 18(4):426-31. PubMed ID: 25088983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.