These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 22617621)
1. Persistent currents in a graphene ring with armchair edges. Huang BL; Chang MC; Mou CY J Phys Condens Matter; 2012 Jun; 24(24):245304. PubMed ID: 22617621 [TBL] [Abstract][Full Text] [Related]
2. Helical edge states and edge-state transport in strained armchair graphene nanoribbons. Liu ZF; Wu QP; Chen AX; Xiao XB; Liu NH; Miao GX Sci Rep; 2017 Aug; 7(1):8854. PubMed ID: 28821764 [TBL] [Abstract][Full Text] [Related]
3. A topological Dirac insulator in a quantum spin Hall phase. Hsieh D; Qian D; Wray L; Xia Y; Hor YS; Cava RJ; Hasan MZ Nature; 2008 Apr; 452(7190):970-4. PubMed ID: 18432240 [TBL] [Abstract][Full Text] [Related]
4. The effect of spin mixing on the quantum Hall effect in graphene. Sheng L; Sheng DN; Xing DY J Phys Condens Matter; 2009 Oct; 21(40):405501. PubMed ID: 21832417 [TBL] [Abstract][Full Text] [Related]
5. Quantum transport through a graphene nanoribbon-superconductor junction. Sun QF; Xie XC J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779 [TBL] [Abstract][Full Text] [Related]
6. The quantum anomalous Hall effect in kagomé lattices. Zhang ZY J Phys Condens Matter; 2011 Sep; 23(36):365801. PubMed ID: 21852732 [TBL] [Abstract][Full Text] [Related]
7. Quantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures. Zhang G; Li X; Wu G; Wang J; Culcer D; Kaxiras E; Zhang Z Nanoscale; 2014 Mar; 6(6):3259-67. PubMed ID: 24509485 [TBL] [Abstract][Full Text] [Related]
8. Unscreened Coulomb interactions and the quantum spin Hall phase in neutral zigzag graphene ribbons. Zarea M; Büsser C; Sandler N Phys Rev Lett; 2008 Nov; 101(19):196804. PubMed ID: 19113295 [TBL] [Abstract][Full Text] [Related]
9. Double trigonal warping and the anomalous quantum Hall step in bilayer graphene with Rashba spin-orbit coupling. Wang B; Zhang C; Ma Z J Phys Condens Matter; 2012 Dec; 24(48):485303. PubMed ID: 23132227 [TBL] [Abstract][Full Text] [Related]
10. Armchair-edged nanoribbon as a bottleneck to electronic total transmission through a topologically nontrivial graphene nanojunction. Jiang L; Liu Z; Zhao X; Zheng Y J Phys Condens Matter; 2016 Mar; 28(8):085501. PubMed ID: 26828909 [TBL] [Abstract][Full Text] [Related]
11. Edge modes in zigzag and armchair ribbons of monolayer MoS Rostami H; Asgari R; Guinea F J Phys Condens Matter; 2016 Dec; 28(49):495001. PubMed ID: 27731311 [TBL] [Abstract][Full Text] [Related]
12. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons. Huang YC; Chang CP; Lin MF Nanotechnology; 2007 Dec; 18(49):495401. PubMed ID: 20442470 [TBL] [Abstract][Full Text] [Related]
13. Single-parameter charge pump in a zigzag graphene nanoribbon. Gu Y; Yang YH; Wang J; Chan KS J Phys Condens Matter; 2009 Oct; 21(40):405301. PubMed ID: 21832408 [TBL] [Abstract][Full Text] [Related]
14. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon. Huang LF; Zhang GR; Zheng XH; Gong PL; Cao TF; Zeng Z J Phys Condens Matter; 2013 Feb; 25(5):055304. PubMed ID: 23300171 [TBL] [Abstract][Full Text] [Related]
15. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation. Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167 [TBL] [Abstract][Full Text] [Related]
16. Quantum spin Hall effect in graphene. Kane CL; Mele EJ Phys Rev Lett; 2005 Nov; 95(22):226801. PubMed ID: 16384250 [TBL] [Abstract][Full Text] [Related]
17. Structural and electronic properties of graphene nanotube-nanoribbon hybrids. Lee CH; Yang CK; Lin MF; Chang CP; Su WS Phys Chem Chem Phys; 2011 Mar; 13(9):3925-31. PubMed ID: 21210053 [TBL] [Abstract][Full Text] [Related]
18. Soliton Fractional Charges in Graphene Nanoribbon and Polyacetylene: Similarities and Differences. Yang SE Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31207969 [TBL] [Abstract][Full Text] [Related]
19. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons. Veiga RG; Miwa RH; Srivastava GP J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000 [TBL] [Abstract][Full Text] [Related]
20. Fundamental differences between quantum spin Hall edge states at zigzag and armchair terminations of honeycomb and ruby nets. Cano-Cortés L; Ortix C; van den Brink J Phys Rev Lett; 2013 Oct; 111(14):146801. PubMed ID: 24138261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]