These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
55 related articles for article (PubMed ID: 22617724)
1. Unifying the criteria of elastic stability of solids. Wang H; Li M J Phys Condens Matter; 2012 Jun; 24(24):245402. PubMed ID: 22617724 [TBL] [Abstract][Full Text] [Related]
2. The elastic stability, bifurcation and ideal strength of gold under hydrostatic stress: an ab initio calculation. Wang H; Li M J Phys Condens Matter; 2009 Nov; 21(45):455401. PubMed ID: 21694011 [TBL] [Abstract][Full Text] [Related]
3. Elasticity in crystals under pressure. Marcus PM; Qiu SL J Phys Condens Matter; 2009 Mar; 21(11):115401. PubMed ID: 21693916 [TBL] [Abstract][Full Text] [Related]
4. Equilibrium lines and crystal phases under pressure. Marcus PM; Qiu SL J Phys Condens Matter; 2009 Mar; 21(12):125404. PubMed ID: 21817465 [TBL] [Abstract][Full Text] [Related]
5. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
6. Energy of charged states in the acetanilide crystal: trapping of charge-transfer states at vacancies as a possible mechanism for optical damage. Tsiaousis D; Munn RW J Chem Phys; 2004 Apr; 120(15):7095-106. PubMed ID: 15267613 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic conditions for stability in materials with rate-independent dissipation. Petryk H Philos Trans A Math Phys Eng Sci; 2005 Nov; 363(1836):2479-515. PubMed ID: 16243706 [TBL] [Abstract][Full Text] [Related]
9. The ideal strength of gold under uniaxial stress: an ab initio study. Wang H; Li M J Phys Condens Matter; 2010 Jul; 22(29):295405. PubMed ID: 21399307 [TBL] [Abstract][Full Text] [Related]
10. Computing the free energy of molecular solids by the Einstein molecule approach: ices XIII and XIV, hard-dumbbells and a patchy model of proteins. Noya EG; Conde MM; Vega C J Chem Phys; 2008 Sep; 129(10):104704. PubMed ID: 19044935 [TBL] [Abstract][Full Text] [Related]
11. Revisiting the Frenkel-Ladd method to compute the free energy of solids: the Einstein molecule approach. Vega C; Noya EG J Chem Phys; 2007 Oct; 127(15):154113. PubMed ID: 17949138 [TBL] [Abstract][Full Text] [Related]
12. High resolution electron backscatter diffraction measurements of elastic strain variations in the presence of larger lattice rotations. Britton TB; Wilkinson AJ Ultramicroscopy; 2012 Mar; 114():82-95. PubMed ID: 22366635 [TBL] [Abstract][Full Text] [Related]
13. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related]
14. Stability analysis of second- and fourth-order finite-difference modelling of wave propagation in orthotropic media. Veres IA Ultrasonics; 2010 Mar; 50(3):431-8. PubMed ID: 19913266 [TBL] [Abstract][Full Text] [Related]
15. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Stoodley P; Lewandowski Z; Boyle JD; Lappin-Scott HM Biotechnol Bioeng; 1999 Oct; 65(1):83-92. PubMed ID: 10440674 [TBL] [Abstract][Full Text] [Related]
16. Finite strain crack tip fields in soft incompressible elastic solids. Krishnan VR; Hui CY; Long R Langmuir; 2008 Dec; 24(24):14245-53. PubMed ID: 19053624 [TBL] [Abstract][Full Text] [Related]
17. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. Schileo E; Taddei F; Cristofolini L; Viceconti M J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics simulations for pure epsilon-CL-20 and epsilon-CL-20-based PBXs. Xu XJ; Xiao HM; Xiao JJ; Zhu W; Huang H; Li JS J Phys Chem B; 2006 Apr; 110(14):7203-7. PubMed ID: 16599487 [TBL] [Abstract][Full Text] [Related]
19. [Three-dimensional finite element stress analysis of supporting bone of mandibular posterior fixed bridge. Part III. Comparative analysis with stress of the cortical bone beneath different pontics of fixed bridge]. Tang L; Chen G Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Feb; 18(1):58-60. PubMed ID: 12539367 [TBL] [Abstract][Full Text] [Related]
20. An Analysis and Comparison of Convergence and Uniqueness of Time-Independent Bone Adaptation Models. Wu W Comput Methods Biomech Biomed Engin; 1998; 1(3):223-232. PubMed ID: 11264805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]