BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22617791)

  • 1. MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte-erythroid progenitor lineage commitment.
    Zhang L; Sankaran VG; Lodish HF
    Leukemia; 2012 Nov; 26(11):2310-6. PubMed ID: 22617791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel role for EKLF in megakaryocyte lineage commitment.
    Frontelo P; Manwani D; Galdass M; Karsunky H; Lohmann F; Gallagher PG; Bieker JJ
    Blood; 2007 Dec; 110(12):3871-80. PubMed ID: 17715392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hematopoietic lineage commitment: miRNAs add specificity to a widely expressed transcription factor.
    García P; Frampton J
    Dev Cell; 2008 Jun; 14(6):815-6. PubMed ID: 18539110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation.
    Elagib KE; Racke FK; Mogass M; Khetawat R; Delehanty LL; Goldfarb AN
    Blood; 2003 Jun; 101(11):4333-41. PubMed ID: 12576332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origins of the Vertebrate Erythro/Megakaryocytic System.
    Svoboda O; Bartunek P
    Biomed Res Int; 2015; 2015():632171. PubMed ID: 26557683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of hematopoietic lineage-specific gene expression by ES cell in vitro differentiation induction system.
    Era T; Takagi T; Takahashi T; Bories JC; Nakano T
    Blood; 2000 Feb; 95(3):870-8. PubMed ID: 10648398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways.
    Psaila B; Barkas N; Iskander D; Roy A; Anderson S; Ashley N; Caputo VS; Lichtenberg J; Loaiza S; Bodine DM; Karadimitris A; Mead AJ; Roberts I
    Genome Biol; 2016 May; 17():83. PubMed ID: 27142433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis.
    Klimchenko O; Mori M; Distefano A; Langlois T; Larbret F; Lecluse Y; Feraud O; Vainchenker W; Norol F; Debili N
    Blood; 2009 Aug; 114(8):1506-17. PubMed ID: 19478046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage.
    Randrianarison-Huetz V; Laurent B; Bardet V; Blobe GC; Huetz F; Duménil D
    Blood; 2010 Apr; 115(14):2784-95. PubMed ID: 20124515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MYB controls erythroid versus megakaryocyte lineage fate decision through the miR-486-3p-mediated downregulation of MAF.
    Bianchi E; Bulgarelli J; Ruberti S; Rontauroli S; Sacchi G; Norfo R; Pennucci V; Zini R; Salati S; Prudente Z; Ferrari S; Manfredini R
    Cell Death Differ; 2015 Dec; 22(12):1906-21. PubMed ID: 25857263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential requirements for survivin in hematopoietic cell development.
    Gurbuxani S; Xu Y; Keerthivasan G; Wickrema A; Crispino JD
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11480-5. PubMed ID: 16055565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced GATA-1 expression in the murine myeloid cell line M1: induction of c-Mpl expression and megakaryocytic/erythroid differentiation.
    Yamaguchi Y; Zon LI; Ackerman SJ; Yamamoto M; Suda T
    Blood; 1998 Jan; 91(2):450-7. PubMed ID: 9427697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage.
    Woolthuis CM; Park CY
    Blood; 2016 Mar; 127(10):1242-8. PubMed ID: 26787736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of thrombopoietin (TPO)-responsive progenitor cells in adult mouse bone marrow with in vivo megakaryocyte and erythroid potential.
    Ng AP; Kauppi M; Metcalf D; Di Rago L; Hyland CD; Alexander WS
    Proc Natl Acad Sci U S A; 2012 Feb; 109(7):2364-9. PubMed ID: 22308484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valproic acid regulates erythro-megakaryocytic differentiation through the modulation of transcription factors and microRNA regulatory micro-networks.
    Trécul A; Morceau F; Gaigneaux A; Schnekenburger M; Dicato M; Diederich M
    Biochem Pharmacol; 2014 Nov; 92(2):299-311. PubMed ID: 25241289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. microRNA regulation in megakaryocytopoiesis.
    Li H; Zhao H; Wang D; Yang R
    Br J Haematol; 2011 Nov; 155(3):298-307. PubMed ID: 21910717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation.
    Ikonomi P; Rivera CE; Riordan M; Washington G; Schechter AN; Noguchi CT
    Exp Hematol; 2000 Dec; 28(12):1423-31. PubMed ID: 11146164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The homeobox gene DLX4 regulates erythro-megakaryocytic differentiation by stimulating IL-1β and NF-κB signaling.
    Trinh BQ; Barengo N; Kim SB; Lee JS; Zweidler-McKay PA; Naora H
    J Cell Sci; 2015 Aug; 128(16):3055-67. PubMed ID: 26208636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. microRNA-22 promotes megakaryocyte differentiation through repression of its target,
    Weiss CN; Ito K
    Blood Adv; 2019 Jan; 3(1):33-46. PubMed ID: 30617215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced myeloid differentiation of K562 cells with downregulation of erythroid and megakaryocytic transcription factors: a novel experimental model for hemopoietic lineage restriction.
    Green AR; Rockman S; DeLuca E; Begley CG
    Exp Hematol; 1993 Apr; 21(4):525-31. PubMed ID: 8462662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.