These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22618229)

  • 21. Using 3.0 eV Large Bandgap Conjugated Polymer as Host Donor to Construct Ternary Semi-Transparent Polymer Solar Cells: Increased Average Visible Transmittance and Modified Color Temperature.
    Liu X; Liu Z; Chen M; Wang Q; Pan F; Liu H; Zhang L; Chen J
    Macromol Rapid Commun; 2022 Nov; 43(22):e2200199. PubMed ID: 35380177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Narrow Near-Infrared Emission from InP QDs Synthesized with Indium(I) Halides and Aminophosphine.
    Yadav R; Kwon Y; Rivaux C; Saint-Pierre C; Ling WL; Reiss P
    J Am Chem Soc; 2023 Mar; 145(10):5970-5981. PubMed ID: 36866828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New Eco-Friendly Phosphorus Organic Polymers as Gas Storage Media.
    Ahmed DS; El-Hiti GA; Yousif E; Hameed AS; Abdalla M
    Polymers (Basel); 2017 Aug; 9(8):. PubMed ID: 30971013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Narrow-Bandgap n-Type Polymer Semiconductor Enabling Efficient All-Polymer Solar Cells.
    Shi S; Chen P; Chen Y; Feng K; Liu B; Chen J; Liao Q; Tu B; Luo J; Su M; Guo H; Kim MG; Facchetti A; Guo X
    Adv Mater; 2019 Nov; 31(46):e1905161. PubMed ID: 31566274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Near-ultraviolet chemiluminescence from the reaction of ammonia with hypobromite in aqueous solution.
    Francis PS; Adcock JL; Barnett NW
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):708-10. PubMed ID: 16495138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the all-polymer solar cell performance by adding a narrow bandgap polymer as the second donor.
    Wang K; Dong S; Chen X; Zhou P; Zhang K; Huang J; Wang M
    RSC Adv; 2020 Oct; 10(63):38344-38350. PubMed ID: 35517516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semiconducting polymer photodetectors with electron and hole blocking layers: high detectivity in the near-infrared.
    Gong X; Tong MH; Park SH; Liu M; Jen A; Heeger AJ
    Sensors (Basel); 2010; 10(7):6488-96. PubMed ID: 22163562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultranarrow Bandgap Naphthalenediimide-Dialkylbifuran-Based Copolymers with High-Performance Organic Thin-Film Transistors and All-Polymer Solar Cells.
    Shi S; Chen P; Wang H; Koh CW; Uddin MA; Liu B; Liao Q; Feng K; Woo HY; Xiao G; Guo X
    Macromol Rapid Commun; 2020 Jun; 41(12):e2000144. PubMed ID: 32400906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral filtering using active metasurfaces compatible with narrow bandgap III-V infrared detectors.
    Wolf O; Campione S; Kim J; Brener I
    Opt Express; 2016 Sep; 24(19):21512-20. PubMed ID: 27661890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemiluminescence of 3-aminophthalic acid anion-hydrogen peroxide-cobalt (II).
    Huang K; Sun Y; Liu L; Hu C
    Luminescence; 2020 May; 35(3):400-405. PubMed ID: 31901000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber.
    Alkeskjold TT; Laegsgaard J; Bjarklev A; Hermann DS; Broeng J; Li J; Gauza S; Wu ST
    Appl Opt; 2006 Apr; 45(10):2261-4. PubMed ID: 16607993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beyond Donor-Acceptor (D-A) Approach: Structure-Optoelectronic Properties-Organic Photovoltaic Performance Correlation in New D-A
    Chochos CL; Drakopoulou S; Katsouras A; Squeo BM; Sprau C; Colsmann A; Gregoriou VG; Cando AP; Allard S; Scherf U; Gasparini N; Kazerouni N; Ameri T; Brabec CJ; Avgeropoulos A
    Macromol Rapid Commun; 2017 Apr; 38(7):. PubMed ID: 28195679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non-Fullerene Acceptors for Biometric Monitoring.
    Jacoutot P; Scaccabarozzi AD; Zhang T; Qiao Z; Aniés F; Neophytou M; Bristow H; Kumar R; Moser M; Nega AD; Schiza A; Dimitrakopoulou-Strauss A; Gregoriou VG; Anthopoulos TD; Heeney M; McCulloch I; Bakulin AA; Chochos CL; Gasparini N
    Small; 2022 Apr; 18(15):e2200580. PubMed ID: 35246948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Near-infrared chemiluminescence from the oxidation of ammonia in aqueous alkaline solution.
    Francis PS; Barnett NW; Smith TA; Spizzirri PG; Wang X; Krausz E
    Luminescence; 2005; 20(6):442-4. PubMed ID: 15966057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the temperature-responsive polymers and gels based on N-propylacrylamides and N-propylmethacrylamides.
    Kano M; Kokufuta E
    Langmuir; 2009 Aug; 25(15):8649-55. PubMed ID: 19323452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. InAs Nanorod Colloidal Quantum Dots with Tunable Bandgaps Deep into the Short-Wave Infrared.
    Sheikh T; Mir WJ; Nematulloev S; Maity P; Yorov KE; Hedhili MN; Emwas AH; Khan MS; Abulikemu M; Mohammed OF; Bakr OM
    ACS Nano; 2023 Nov; 17(22):23094-23102. PubMed ID: 37955579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.
    Lai ML; Tay TY; Sadhanala A; Dutton SE; Li G; Friend RH; Tan ZK
    J Phys Chem Lett; 2016 Jul; 7(14):2653-8. PubMed ID: 27336412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size and bandgap control in the solution-phase synthesis of near-infrared-emitting germanium nanocrystals.
    Ruddy DA; Johnson JC; Smith ER; Neale NR
    ACS Nano; 2010 Dec; 4(12):7459-66. PubMed ID: 21090762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymer solar cells based on very narrow-bandgap polyplatinynes with photocurrents extended into the near-infrared region.
    Wang XZ; Wong WY; Cheung KY; Fung MK; Djurisić AB; Chan WK
    Dalton Trans; 2008 Oct; (40):5484-94. PubMed ID: 19082032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemiluminescence intensities and spectra of luminol oxidation by sodium hypochlorite in the presence of hydrogen peroxide.
    Arnhold J; Mueller S; Arnold K; Grimm E
    J Biolumin Chemilumin; 1991; 6(3):189-92. PubMed ID: 1746319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.