BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 22618245)

  • 1. Targeting NOX enzymes in pulmonary fibrosis.
    Hecker L; Cheng J; Thannickal VJ
    Cell Mol Life Sci; 2012 Jul; 69(14):2365-71. PubMed ID: 22618245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH oxidases: Pathophysiology and therapeutic potential in age-associated pulmonary fibrosis.
    Kato K; Hecker L
    Redox Biol; 2020 Jun; 33():101541. PubMed ID: 32360174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease.
    Altenhöfer S; Kleikers PW; Radermacher KA; Scheurer P; Rob Hermans JJ; Schiffers P; Ho H; Wingler K; Schmidt HH
    Cell Mol Life Sci; 2012 Jul; 69(14):2327-43. PubMed ID: 22648375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Imbalance in Idiopathic Pulmonary Fibrosis: A Role for Oxidant Cross-Talk Between NADPH Oxidase Enzymes and Mitochondria.
    Veith C; Boots AW; Idris M; van Schooten FJ; van der Vliet A
    Antioxid Redox Signal; 2019 Nov; 31(14):1092-1115. PubMed ID: 30793932
    [No Abstract]   [Full Text] [Related]  

  • 5. Targeting NOX enzymes in the central nervous system: therapeutic opportunities.
    Sorce S; Krause KH; Jaquet V
    Cell Mol Life Sci; 2012 Jul; 69(14):2387-407. PubMed ID: 22643836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent.
    Aoyama T; Paik YH; Watanabe S; Laleu B; Gaggini F; Fioraso-Cartier L; Molango S; Heitz F; Merlot C; Szyndralewiez C; Page P; Brenner DA
    Hepatology; 2012 Dec; 56(6):2316-27. PubMed ID: 22806357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular insights of NADPH oxidases and its pathological consequences.
    Waghela BN; Vaidya FU; Agrawal Y; Santra MK; Mishra V; Pathak C
    Cell Biochem Funct; 2021 Mar; 39(2):218-234. PubMed ID: 32975319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibiting the Activity of NADPH Oxidase in Cancer.
    Konaté MM; Antony S; Doroshow JH
    Antioxid Redox Signal; 2020 Aug; 33(6):435-454. PubMed ID: 32008376
    [No Abstract]   [Full Text] [Related]  

  • 9. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.
    Babalola O; Mamalis A; Lev-Tov H; Jagdeo J
    Arch Dermatol Res; 2014 May; 306(4):313-330. PubMed ID: 24155025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH Oxidase Inhibition in Fibrotic Pathologies.
    Bernard K; Thannickal VJ
    Antioxid Redox Signal; 2020 Aug; 33(6):455-479. PubMed ID: 32129665
    [No Abstract]   [Full Text] [Related]  

  • 11. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.
    Altenhöfer S; Radermacher KA; Kleikers PW; Wingler K; Schmidt HH
    Antioxid Redox Signal; 2015 Aug; 23(5):406-27. PubMed ID: 24383718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NOX enzymes as drug targets.
    Krause KH; Lambeth D; Krönke M
    Cell Mol Life Sci; 2012 Jul; 69(14):2279-82. PubMed ID: 22585058
    [No Abstract]   [Full Text] [Related]  

  • 13. NADPH oxidase-mediated induction of reactive oxygen species and extracellular matrix deposition by insulin-like growth factor binding protein-5.
    Yasuoka H; Garrett SM; Nguyen XX; Artlett CM; Feghali-Bostwick CA
    Am J Physiol Lung Cell Mol Physiol; 2019 Apr; 316(4):L644-L655. PubMed ID: 30810066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting NADPH oxidases in vascular pharmacology.
    Schramm A; Matusik P; Osmenda G; Guzik TJ
    Vascul Pharmacol; 2012; 56(5-6):216-31. PubMed ID: 22405985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research progress of NADPH oxidases and their inhibitors].
    Yang XL; Chen YJ; Hu GY; Li QB
    Yao Xue Xue Bao; 2016 Apr; 51(4):499-506. PubMed ID: 29859517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NADPH Oxidase Family and Its Inhibitors.
    Chocry M; Leloup L
    Antioxid Redox Signal; 2020 Aug; 33(5):332-353. PubMed ID: 31826639
    [No Abstract]   [Full Text] [Related]  

  • 17. Glucose-6-Phosphate Dehydrogenase Deficiency Activates Endothelial Cell and Leukocyte Adhesion Mediated via the TGFβ/NADPH Oxidases/ROS Signaling Pathway.
    Parsanathan R; Jain SK
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications.
    Urner S; Ho F; Jha JC; Ziegler D; Jandeleit-Dahm K
    Antioxid Redox Signal; 2020 Aug; 33(6):415-434. PubMed ID: 32008354
    [No Abstract]   [Full Text] [Related]  

  • 19. Serotonin Signaling Through the 5-HT
    Hood KY; Mair KM; Harvey AP; Montezano AC; Touyz RM; MacLean MR
    Arterioscler Thromb Vasc Biol; 2017 Jul; 37(7):1361-1370. PubMed ID: 28473438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets.
    Zhang Y; Murugesan P; Huang K; Cai H
    Nat Rev Cardiol; 2020 Mar; 17(3):170-194. PubMed ID: 31591535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.