These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 22618589)
1. Monitoring morphological changes in the retina of rhodopsin-/- mice with spectral domain optical coherence tomography. Wang R; Jiang C; Ma J; Young MJ Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3967-72. PubMed ID: 22618589 [TBL] [Abstract][Full Text] [Related]
2. Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography. Kim KH; Puoris'haag M; Maguluri GN; Umino Y; Cusato K; Barlow RB; de Boer JF J Vis; 2008 Jan; 8(1):17.1-11. PubMed ID: 18318620 [TBL] [Abstract][Full Text] [Related]
3. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515 [TBL] [Abstract][Full Text] [Related]
4. Dose-dependent retinal changes following sodium iodate administration: application of spectral-domain optical coherence tomography for monitoring of retinal injury and endogenous regeneration. Machalińska A; Lejkowska R; Duchnik M; Kawa M; Rogińska D; Wiszniewska B; Machaliński B Curr Eye Res; 2014 Oct; 39(10):1033-41. PubMed ID: 24661221 [TBL] [Abstract][Full Text] [Related]
5. Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse. Li Q; Timmers AM; Hunter K; Gonzalez-Pola C; Lewin AS; Reitze DH; Hauswirth WW Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):2981-9. PubMed ID: 11687546 [TBL] [Abstract][Full Text] [Related]
6. Characterization of photoreceptor degeneration in the rhodopsin P23H transgenic rat line 2 using optical coherence tomography. Monai N; Yamauchi K; Tanabu R; Gonome T; Ishiguro SI; Nakazawa M PLoS One; 2018; 13(3):e0193778. PubMed ID: 29522537 [TBL] [Abstract][Full Text] [Related]
7. Visual Contrast Sensitivity Correlates to the Retinal Degeneration in Rhodopsin Knockout Mice. Xiao J; Adil MY; Chang K; Yu Z; Yang L; Utheim TP; Chen DF; Cho KS Invest Ophthalmol Vis Sci; 2019 Oct; 60(13):4196-4204. PubMed ID: 31618423 [TBL] [Abstract][Full Text] [Related]
8. The Spectral-Domain Optical Coherence Tomography Findings Associated with the Morphological and Electrophysiological Changes in a Rat Model of Retinal Degeneration, Rhodopsin S334ter-4 Rats. Yamauchi K; Tanabu R; Monai N; Gonome T; Xie Y; Takahashi S; Ishiguro SI; Nakazawa M Biomed Res Int; 2018; 2018():5174986. PubMed ID: 30581855 [TBL] [Abstract][Full Text] [Related]
9. Selective photoreceptor degeneration by intravitreal injection of N-methyl-N-nitrosourea. Rösch S; Johnen S; Mataruga A; Müller F; Pfarrer C; Walter P Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1711-23. PubMed ID: 24550357 [TBL] [Abstract][Full Text] [Related]
10. Clinically Relevant Outcome Measures for the I307N Rhodopsin Mouse: A Model of Inducible Autosomal Dominant Retinitis Pigmentosa. Massengill MT; Young B; Patel D; Jafri F; Sabogal E; Ash N; Li H; Ildefonso CJ; Lewin AS Invest Ophthalmol Vis Sci; 2018 Nov; 59(13):5417-5430. PubMed ID: 30452595 [TBL] [Abstract][Full Text] [Related]
11. Evidence of early ultrastructural photoreceptor abnormalities in light-induced retinal degeneration using spectral domain optical coherence tomography. Aziz MK; Ni A; Esserman DA; Chavala SH Br J Ophthalmol; 2014 Jul; 98(7):984-9. PubMed ID: 24671925 [TBL] [Abstract][Full Text] [Related]
12. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa. Zhang X; Girardot PE; Sellers JT; Li Y; Wang J; Chrenek MA; Wu W; Skelton H; Nickerson JM; Pardue MT; Boatright JH Mol Vis; 2019; 25():462-476. PubMed ID: 31523123 [TBL] [Abstract][Full Text] [Related]
13. Vision deficits precede structural losses in a mouse model of mitochondrial dysfunction and progressive retinal degeneration. Laliberté AM; MacPherson TC; Micks T; Yan A; Hill KA Exp Eye Res; 2011 Dec; 93(6):833-41. PubMed ID: 21983042 [TBL] [Abstract][Full Text] [Related]
14. Changes in morphology and visual function over time in mouse models of retinal degeneration: an SD-OCT, histology, and electroretinography study. Hasegawa T; Ikeda HO; Nakano N; Muraoka Y; Tsuruyama T; Okamoto-Furuta K; Kohda H; Yoshimura N Jpn J Ophthalmol; 2016 Mar; 60(2):111-25. PubMed ID: 26729343 [TBL] [Abstract][Full Text] [Related]
15. The findings of optical coherence tomography of retinal degeneration in relation to the morphological and electroretinographic features in RPE65-/- mice. Tanabu R; Sato K; Monai N; Yamauchi K; Gonome T; Xie Y; Takahashi S; Ishiguro SI; Nakazawa M PLoS One; 2019; 14(1):e0210439. PubMed ID: 30695025 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the rhodopsin knockout mouse as a model of pure cone function. Jaissle GB; May CA; Reinhard J; Kohler K; Fauser S; Lütjen-Drecoll E; Zrenner E; Seeliger MW Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):506-13. PubMed ID: 11157890 [TBL] [Abstract][Full Text] [Related]
18. Increased sensitivity to light-induced damage in a mouse model of autosomal dominant retinal disease. White DA; Fritz JJ; Hauswirth WW; Kaushal S; Lewin AS Invest Ophthalmol Vis Sci; 2007 May; 48(5):1942-51. PubMed ID: 17460245 [TBL] [Abstract][Full Text] [Related]
19. Sigma 1 receptor activation improves retinal structure and function in the Rho Barwick SR; Xiao H; Wolff D; Wang J; Perry E; Marshall B; Smith SB Exp Eye Res; 2023 May; 230():109462. PubMed ID: 37003581 [TBL] [Abstract][Full Text] [Related]
20. Photoreceptor degeneration by intravitreal injection of N-methyl-N-nitrosourea (MNU) in rabbits: a pilot study. Rösch S; Werner C; Müller F; Walter P Graefes Arch Clin Exp Ophthalmol; 2017 Feb; 255(2):317-331. PubMed ID: 27866331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]