These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel. Yan X; Wang J; Sun Y; Zhu J; Wu S Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682 [TBL] [Abstract][Full Text] [Related]
5. Structure of an aryl esterase from Pseudomonas fluorescens. Cheeseman JD; Tocilj A; Park S; Schrag JD; Kazlauskas RJ Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1237-43. PubMed ID: 15213385 [TBL] [Abstract][Full Text] [Related]
6. Hydrolase-catalysed synthesis of peroxycarboxylic acids: Biocatalytic promiscuity for practical applications. Carboni-Oerlemans C; Domínguez de María P; Tuin B; Bargeman G; van der Meer A; van Gemert R J Biotechnol; 2006 Nov; 126(2):140-51. PubMed ID: 16730828 [TBL] [Abstract][Full Text] [Related]
7. Structure of a novel enzyme that catalyzes acyl transfer to alcohols in aqueous conditions. Mathews I; Soltis M; Saldajeno M; Ganshaw G; Sala R; Weyler W; Cervin MA; Whited G; Bott R Biochemistry; 2007 Aug; 46(31):8969-79. PubMed ID: 17636869 [TBL] [Abstract][Full Text] [Related]
8. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation. Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635 [TBL] [Abstract][Full Text] [Related]
9. Increased enantioselectivity by engineering bottleneck mutants in an esterase from Pseudomonas fluorescens. Schliessmann A; Hidalgo A; Berenguer J; Bornscheuer UT Chembiochem; 2009 Dec; 10(18):2920-3. PubMed ID: 19847842 [TBL] [Abstract][Full Text] [Related]
10. Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Park S; Morley KL; Horsman GP; Holmquist M; Hult K; Kazlauskas RJ Chem Biol; 2005 Jan; 12(1):45-54. PubMed ID: 15664514 [TBL] [Abstract][Full Text] [Related]
11. Enantioselectivity of a recombinant esterase from Pseudomonas fluorescens towards alcohols and carboxylic acids. Krebsfänger N; Schierholz K; Bornscheuer UT J Biotechnol; 1998 Feb; 60(1-2):105-11. PubMed ID: 9571805 [TBL] [Abstract][Full Text] [Related]
12. Catalytic promiscuity in the alpha/beta-hydrolase superfamily: hydroxamic acid formation, C--C bond formation, ester and thioester hydrolysis in the C--C hydrolase family. Li C; Hassler M; Bugg TD Chembiochem; 2008 Jan; 9(1):71-6. PubMed ID: 18058773 [TBL] [Abstract][Full Text] [Related]
13. Computational studies of nucleophilic substitution at carbonyl carbon: the S(N)2 mechanism versus the tetrahedral intermediate in organic synthesis. Fox JM; Dmitrenko O; Liao LA; Bach RD J Org Chem; 2004 Oct; 69(21):7317-28. PubMed ID: 15471486 [TBL] [Abstract][Full Text] [Related]
14. Directed evolution of an esterase from Pseudomonas fluorescens. Random mutagenesis by error-prone PCR or a mutator strain and identification of mutants showing enhanced enantioselectivity by a resorufin-based fluorescence assay. Henke E; Bornscheuer UT Biol Chem; 1999; 380(7-8):1029-33. PubMed ID: 10494857 [TBL] [Abstract][Full Text] [Related]
15. Oxidation of carboxylic acids by horseradish peroxidase results in prosthetic heme modification and inactivation. Huang L; Colas C; Ortiz de Montellano PR J Am Chem Soc; 2004 Oct; 126(40):12865-73. PubMed ID: 15469283 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of cis-dihydroxylation and epoxidation of alkenes by highly H(2)O(2) efficient dinuclear manganese catalysts. de Boer JW; Browne WR; Brinksma J; Alsters PL; Hage R; Feringa BL Inorg Chem; 2007 Aug; 46(16):6353-72. PubMed ID: 17608415 [TBL] [Abstract][Full Text] [Related]
17. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering. Nobili A; Tao Y; Pavlidis IV; van den Bergh T; Joosten HJ; Tan T; Bornscheuer UT Chembiochem; 2015 Mar; 16(5):805-10. PubMed ID: 25711719 [TBL] [Abstract][Full Text] [Related]
19. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide. Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946 [TBL] [Abstract][Full Text] [Related]
20. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Bolam DN; Hughes N; Virden R; Lakey JH; Hazlewood GP; Henrissat B; Braithwaite KL; Gilbert HJ Biochemistry; 1996 Dec; 35(50):16195-204. PubMed ID: 8973192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]