These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 22619178)

  • 41. Phase coordination and phase-velocity relationship in metameric robot locomotion.
    Fang H; Li S; Wang KW; Xu J
    Bioinspir Biomim; 2015 Oct; 10(6):066006. PubMed ID: 26513696
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stance leg control: variation of leg parameters supports stable hopping.
    Riese S; Seyfarth A
    Bioinspir Biomim; 2012 Mar; 7(1):016006. PubMed ID: 22183256
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studying bio-inspired coalition formation of robots for detecting intrusions using game theory.
    Liang X; Xiao Y
    IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):683-93. PubMed ID: 19933008
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Towards a bio-inspired leg design for high-speed running.
    Ananthanarayanan A; Azadi M; Kim S
    Bioinspir Biomim; 2012 Dec; 7(4):046005. PubMed ID: 22872655
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Locomotion of Mexican jumping beans.
    West DM; Lal IK; Leamy MJ; Hu DL
    Bioinspir Biomim; 2012 Sep; 7(3):036014. PubMed ID: 22573786
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using sensor habituation in mobile robots to reduce oscillatory movements in narrow corridors.
    Chang C
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1582-9. PubMed ID: 16342498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance.
    Vejdani HR; Blum Y; Daley MA; Hurst JW
    Bioinspir Biomim; 2013 Dec; 8(4):046006. PubMed ID: 24166776
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extension and customization of self-stability control in compliant legged systems.
    Ernst M; Geyer H; Blickhan R
    Bioinspir Biomim; 2012 Dec; 7(4):046002. PubMed ID: 22791685
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of a biomimetic robotic octopus arm.
    Laschi C; Mazzolai B; Mattoli V; Cianchetti M; Dario P
    Bioinspir Biomim; 2009 Mar; 4(1):015006. PubMed ID: 19258690
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conditions for worm-robot locomotion in a flexible environment: theory and experiments.
    Zarrouk D; Sharf I; Shoham M
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1057-67. PubMed ID: 22231667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Octopus-inspired robotics. Preface.
    Mazzolai B; Laschi C
    Bioinspir Biomim; 2015 May; 10(3):030301. PubMed ID: 25970854
    [No Abstract]   [Full Text] [Related]  

  • 53. A dragline-forming mobile robot inspired by spiders.
    Wang L; Culha U; Iida F
    Bioinspir Biomim; 2014 Mar; 9(1):016006. PubMed ID: 24434546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion.
    Kandhari A; Huang Y; Daltorio KA; Chiel HJ; Quinn RD
    Bioinspir Biomim; 2018 Jan; 13(2):026003. PubMed ID: 29261099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From honeybees to robots and back: division of labour based on partitioning social inhibition.
    Zahadat P; Hahshold S; Thenius R; Crailsheim K; Schmickl T
    Bioinspir Biomim; 2015 Oct; 10(6):066005. PubMed ID: 26501169
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How robots are grasping the art of gripping.
    Hodson R
    Nature; 2018 May; 557(7704):S23-S25. PubMed ID: 29743715
    [No Abstract]   [Full Text] [Related]  

  • 57. Biomimetic and bio-inspired robotics in electric fish research.
    Neveln ID; Bai Y; Snyder JB; Solberg JR; Curet OM; Lynch KM; MacIver MA
    J Exp Biol; 2013 Jul; 216(Pt 13):2501-14. PubMed ID: 23761475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution to the mechanics of worm-like motion systems and artificial muscles.
    Steigenberger J
    Biomech Model Mechanobiol; 2003 Aug; 2(1):37-57. PubMed ID: 14586816
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots.
    Renda F; Giorgio-Serchi F; Boyer F; Laschi C
    Bioinspir Biomim; 2015 Sep; 10(5):055005. PubMed ID: 26414068
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling of caterpillar crawl using novel tensegrity structures.
    Orki O; Ayali A; Shai O; Ben-Hanan U
    Bioinspir Biomim; 2012 Dec; 7(4):046006. PubMed ID: 22872665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.