These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22619324)

  • 1. Computational model of a circulation current that controls electrochemical properties in the mammalian cochlea.
    Nin F; Hibino H; Murakami S; Suzuki T; Hisa Y; Kurachi Y
    Proc Natl Acad Sci U S A; 2012 Jun; 109(23):9191-6. PubMed ID: 22619324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The unique electrical properties in an extracellular fluid of the mammalian cochlea; their functional roles, homeostatic processes, and pathological significance.
    Nin F; Yoshida T; Sawamura S; Ogata G; Ota T; Higuchi T; Murakami S; Doi K; Kurachi Y; Hibino H
    Pflugers Arch; 2016 Oct; 468(10):1637-49. PubMed ID: 27568193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential.
    Shibata T; Hibino H; Doi K; Suzuki T; Hisa Y; Kurachi Y
    Am J Physiol Cell Physiol; 2006 Nov; 291(5):C1038-48. PubMed ID: 16822945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical properties of the non-excitable tissue stria vascularis of the mammalian cochlea are sensitive to sounds.
    Zhang Q; Ota T; Yoshida T; Ino D; Sato MP; Doi K; Horii A; Nin F; Hibino H
    J Physiol; 2021 Oct; 599(19):4497-4516. PubMed ID: 34426971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NKCCs in the fibrocytes of the spiral ligament are silent on the unidirectional K⁺ transport that controls the electrochemical properties in the mammalian cochlea.
    Yoshida T; Nin F; Ogata G; Uetsuka S; Kitahara T; Inohara H; Akazawa K; Komune S; Kurachi Y; Hibino H
    Pflugers Arch; 2015 Jul; 467(7):1577-1589. PubMed ID: 25143138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus.
    Hibino H; Nin F; Tsuzuki C; Kurachi Y
    Pflugers Arch; 2010 Mar; 459(4):521-33. PubMed ID: 20012478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of the two-component theory in the production of endocochlear potential.
    Komune S; Kimitsuki T; Nakagawa T; Uemura T
    ORL J Otorhinolaryngol Relat Spec; 1993; 55(4):193-200. PubMed ID: 8336918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential.
    Hibino H; Higashi-Shingai K; Fujita A; Iwai K; Ishii M; Kurachi Y
    Eur J Neurosci; 2004 Jan; 19(1):76-84. PubMed ID: 14750965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K+ cycling and the endocochlear potential.
    Wangemann P
    Hear Res; 2002 Mar; 165(1-2):1-9. PubMed ID: 12031509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aging on potassium homeostasis and the endocochlear potential in the gerbil cochlea.
    Schmiedt RA
    Hear Res; 1996 Dec; 102(1-2):125-32. PubMed ID: 8951457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium, potassium, chloride and calcium concentrations measured in pigeon perilymph and endolymph.
    Sauer G; Richter CP; Klinke R
    Hear Res; 1999 Mar; 129(1-2):1-6. PubMed ID: 10190746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeability to potassium of the endolymph-perilymph barrier and its possible relation to hair cell function.
    Konishi T; Salt AN
    Exp Brain Res; 1980; 40(4):457-63. PubMed ID: 7439285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional importance of sodium and potassium in the guinea pig cochlea studied with amiloride and tetraethylammonium.
    Salt AN; Konishi T
    Jpn J Physiol; 1982; 32(2):219-30. PubMed ID: 7109339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endocochlear potential and endolymphatic K+ changes induced by gap junction blockers.
    Suzuki M; Kikuchi T; Ikeda K
    Acta Otolaryngol; 2004 Oct; 124(8):902-6. PubMed ID: 15513524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction in the endocochlear potential caused by Cs(+) in the perilymph can be explained by the five-compartment model of the stria vascularis.
    Kakigi A; Takeuchi S; Ando M; Higashiyama K; Azuma H; Sato T; Takeda T
    Hear Res; 2002 Apr; 166(1-2):54-61. PubMed ID: 12062758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential.
    Yoshida T; Nin F; Murakami S; Ogata G; Uetsuka S; Choi S; Nakagawa T; Inohara H; Komune S; Kurachi Y; Hibino H
    Pflugers Arch; 2016 Sep; 468(9):1609-19. PubMed ID: 27344659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in cochlear endolymphatic potassium and potential in CD-1 and CBA/CaJ mice.
    Wu T; Marcus DC
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):353-62. PubMed ID: 14690053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism underlying maintenance of the endocochlear potential by the K+ transport system in fibrocytes of the inner ear.
    Adachi N; Yoshida T; Nin F; Ogata G; Yamaguchi S; Suzuki T; Komune S; Hisa Y; Hibino H; Kurachi Y
    J Physiol; 2013 Sep; 591(18):4459-72. PubMed ID: 23836687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal distribution of cochlear potentials and the K+ concentration in the endolymph after acoustic trauma.
    Syka J; Melichar I; Ulehlová L
    Hear Res; 1981 Jul; 4(3-4):287-98. PubMed ID: 7263516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of adrenalectomy and noise exposure on compound action potentials, endocochlear potentials and endolymphatic potassium concentrations.
    Ma YL; Gerhardt KJ; Curtis LM; Rybak LP; Whitworth C; Rarey KE
    Hear Res; 1995 Nov; 91(1-2):79-86. PubMed ID: 8647728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.